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In this assignment, you’ll be implementing a fine-grained entity typing model.

Data
https://drive.google.com/file/d/1sx3d9J5hFha_o7xWxw08EixracAAoc5g/view?usp=sharing

Format
The data files are in JSON format where each line represents a JSON object.
Example:
	{"tokens": ["It", "was", "created", "from", "part", "of", "the", "province", "of", "Normandie", "."], "annotations": [{"mention": "Normandie", "mention_id": "90497-0", "start": 9, "end": 10, "labels": ["Country108544813", "Region108630039", "State108654360", "Region108630985"]}]}



tokens: a list of token strings.
annotations: a list of mentions, where each item has the following fields:
· mention: mention text string
· mention_id: a unique ID assigned to each mention
· start: start token index (inclusive)
· end: end token index (exclusive)
· labels: a list of fine-grained entity labels

Task
1. (8-12 pt) Implement a fine-grained entity typing model based on previous work or new ideas. Train your model on en.train.json, select the best model based on scores on en.dev.json, and test the model on en.test.json. Report macro-F1, micro-F1.
a. As the training set is large, you may downsample the training set.
b. To avoid out-of-memory errors, you can implement a “lazy” dataloader (load the dataset in a streaming way).

We will rank all submitted systems based on F-score, and assign points between 8-12 based on the rank.
2. (3 pt) Analyze and categorize remaining errors produced by the model and propose at least three possible solutions.
3. (3 pt) Write a clear and informative written report about your methods, results, and findings.
Evaluation Metric:def calculate_macro_fscore(golds: List[List[int]],
                           preds: List[List[int]]
                           ) -> Tuple[float, float, float]:
    """Calculate Macro F-score.

    Args:
        golds (List[List[int]]): Ground truth. The j-th element in the i-th
        list indicates whether the j-th label is associated with the i-th
        entity or not. If it is 1, the entity is annotated with the j-th
        label. If it is 0, the j-th label is not assigned to the entity.
        preds (List[List[int]]): Prediction. The j-th element in the i-th
        list indicates whether the j-th label is predicted for the i-th
        entity or not.

    Returns:
        Tuple[float, float, float]: Precision, recall, and F-score.
    """
    total_gold_num = total_pred_num = 0
    precision = recall = 0
    for gold, pred in zip(golds, preds):
        gold_num = sum(gold)
        pred_num = sum(pred)
        total_gold_num += (1 if gold_num > 0 else 0)
        total_pred_num += (1 if pred_num > 0 else 0)
        overlap = sum([i and j for i, j in zip(gold, pred)])
        precision += (0 if pred_num == 0 else overlap / pred_num)
        recall += (0 if gold_num == 0 else overlap / gold_num)
    precision = precision / total_pred_num if total_pred_num else 0
    recall = recall / total_gold_num if total_gold_num else 0
    fscore = 0 if precision + recall == 0 else \
        2.0 * (precision * recall) / (precision + recall)

    return precision * 100.0, recall * 100.0, fscore * 100.0


def calculate_micro_fscore(golds: List[List[int]],
                           preds: List[List[int]]
                           ):
    # Calculate Micro F-score.
    total_gold_num = total_pred_num = overlap = 0
    for gold, pred in zip(golds, preds):
        total_gold_num += sum(gold)
        total_pred_num += sum(pred)
        overlap += sum([i and j for i, j in zip(gold, pred)])
    precision = 0 if total_pred_num == 0 else overlap / total_pred_num
    recall = 0 if total_gold_num == 0 else overlap / total_gold_num
    fscore = 0 if precision + recall == 0 else \
        2.0 * (precision * recall) / (precision + recall)
    return fscore * 100.0























Additional Data:
KBP: https://drive.google.com/file/d/143SmLZCagojkSVD3qOg6z4wkk-cxLOrO/view?usp=sharing
Original data (no downsampling): https://drive.google.com/file/d/1xstlGlkv9arrBzmWjVx4cplR8RQ8N5fp/view?usp=sharing

Tools:
· Fine-grained entity recognition: https://github.com/xiaoling/figer
· Ultra-fine grained entity typing: https://homes.cs.washington.edu/~eunsol/open_entity.html
· Neural Entity Typing with Knowledge Attention: https://github.com/thunlp/KNET
· https://github.com/guillaumegenthial/sequence_tagging (Tensorflow)
· https://github.com/threelittlemonkeys/lstm-crf-pytorch
https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
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