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ABSTRACT
The Entity Linking (EL) task links entity mentions from
an unstructured document to entities in a knowledge base.
Although this problem is well-studied in news and social me-
dia, this problem has not received much attention in the life
science domain. One outcome of tackling the EL problem
in the life sciences domain is to enable scientists to build
computational models of biological processes with more ef-
ficiency. However, simply applying a news-trained entity
linker produces inadequate results.

Since existing supervised approaches require a large amount
of manually-labeled training data, which is currently un-
available for the life science domain, we propose a novel un-
supervised collective inference approach to link entities from
unstructured full texts of biomedical literature to 300 ontolo-
gies. The approach leverages the rich semantic information
and structures in ontologies for similarity computation and
entity ranking.

Without using any manual annotation, our approach sig-
nificantly outperforms state-of-the-art supervised EL method
(9% absolute gain in linking accuracy). Furthermore, the
state-of-the-art supervised EL method requires 15,000 man-
ually annotated entity mentions for training. These promis-
ing results establish a benchmark for the EL task in the life
science domain1. We also provide in depth analysis and dis-
cussion on both challenges and opportunities on automatic
knowledge enrichment for scientific literature.

In this paper, we propose a novel unsupervised collective
inference approach to address the EL problem in a new do-
main. We show that our unsupervised approach is able to
outperform a current state-of-the-art supervised approach
that has been trained with a large amount of manually la-
beled data. Life science presents an underrepresented do-
main for applying EL techniques. By providing a small
benchmark data set and identifying opportunities, we hope

∗These authors contributed equally to the preparation of
this manuscript.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).
DTMBIO’14, Nov 7 November 7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-1275-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2665970.2665974.

to stimulate discussions across natural language processing
and bioinformatics and motivate others to develop tech-
niques for this largely untapped domain.

Categories and Subject Descriptors
H.3.1 [INFORMATION STORAGE AND RETRIEVAL]:
Content Analysis and Indexing

Keywords
Semantic Web, Bological Ontologies, Text Mining, Signal
Transduction, Wikification, Entity Linking, Biomedical Lit-
erature

1. INTRODUCTION
Mining and linking important information from scientific

literature can have a tremendous impact on scientific discov-
ery as it is extremely challenging even for domain experts
to keep up with the large number of papers [14]. For exam-
ple, models of signaling and metabolic pathways are useful
tools that aim to concisely represent the known information
about a given pathway and accurately predict the effects of
different stimuli on cellular processes. Modeling these path-
ways can aid scientists’ understanding of diseases, such as
cancer. However, these pathways are very time-intensive to
model, usually requiring the human modeler to read numer-
ous papers to obtain the necessary information.

A major bottleneck in understanding scientific literature
lies in the enormous amount of unexplained abbreviations
and terminologies [11]. For example, the transcription fac-
tor“C/EBP-β”is also known as“NF-IL6”; the protein“Arnt”
is sometimes referred to as “HIF1-β”. Being able to identify
the key proteins, and their behaviors and interactions, would
be extremely helpful for supporting the modeling task. In
this paper we focus on the task of Entity Linking (EL)
for biomedical literature – automatically identifying promi-
nent entity mentions from unstructured full texts and link-
ing them to (or “grounding them in”) terms described in a
Knowledge Base (KB) and/or defined in an ontology in order
to enrich text documents. These knowledge base or ontol-
ogy terms are sometimes referred to as reference entities.
For example, from the following sentence from Lipniacki et
al. [18]:

“In resting cells, p50-65 heterodimers (referred herein as
NF-κB) are sequestered in the cytoplasm by association
with members of another family of proteins called IκB.”



an EL system will identify three prominent mentions “p50-
65 heterodimers”, “NF-κB” and “IκB”, and link the first two
to “nuclear factor kappa-light-chain-enhancer of activated B
cells” and the third to “nuclear factor of kappa light polypep-
tide gene enhancer in B-cells inhibitor” in some knowledge
base. EL can help human end-users navigate biomedical lit-
erature, and improve many other Natural Language Process-
ing (NLP) tasks such as protein-protein interaction event
extraction [24, 19].

EL is a well-studied problem in news and social media.
When we apply state-of-the-art EL techniques to the biomed-
ical domain, we face new challenges. In this paper we will
focus on two unique challenges and our solutions to address
each of them.

The first challenge lies in the lack of sufficient context
for understanding the entity mentions. This requires us to
move from non-collective approaches which link each indi-
vidual mention at a time to collective inference by lever-
aging the global topical coherence and linking a set of rel-
evant mentions simultaneously. The basic idea is that if
we know multiple entity mentions are semantically related
in the unstructured source texts (i.e., they co-occur in the
same sentence,are linked through dependency paths, or play
certain semantic roles in the same event, etc.), we can as-
sume they are semantically related and thus their reference
entities should also be connected via semantic links in the
ontologies. Collective inference is particularly effective to
link entities in scientific literature because the authors of-
ten assume that the readers are also domain experts with
enough background knowledge about these entities.

The second challenge is the lack and the expense of gen-
erating labeled EL data for the biomedical domain. Manual
EL annotation for a new domain is challenging and time-
consuming. Previous EL work mainly exploited Wikipedia
as the target knowledge base. Fortunately, there exist many
publicly accessible ontologies in this domain such as those
in BioPortal1. These ontologies contain rich structures with
declaratively defined semantic relations, along with compre-
hensive text descriptions written by domain experts. In this
paper, we describe an unsupervised EL algorithm by lever-
aging well-structured ontologies (e.g., hierarchical and rela-
tional structure) and well-defined semantic relations among
entities in the ontologies (e.g., subClassOf). Such rich knowl-
edge also enables us to move away from labor-intensive su-
pervised approaches and gear toward a completely unsuper-
vised approach using novel similarity and coherence mea-
sures based on graph structures.

The main novel contributions of this paper are as follows.

• We propose a new task to link prominent entity men-
tions in full texts of biomedical literature to rich on-
tologies.

• We design a novel collective inference approach and
build a benchmark for this new task.

• We exploit the rich structures in ontologies to perform
EL in a completely unsupervised fashion without any
annotation cost, which even significantly outperforms
state-of-the-art supervised approaches.

• We provide thorough analysis about the effectiveness
of our approach and the remaining challenges, and

1http://bioportal.bioontology.org/

shed a light on the general research direction of auto-
matic “reading” scientific literature via knowledge en-
richment.

2. RELATED WORK
There have been extensive studies on extracting entity

mentions from biomedical literature (e.g., [9, 11, 2, 32]) .
The previous task that is the closest to our study is gene
name normalization [13] which focused on linking entity
mentions to a list of gene entities [8, 21]. Compared to such
a list of flat structures, we instead target a broader range of
entity types from full texts (rather than only abstracts), and
leverage the deeper structures contained in the ontologies.

Although entity mention extraction from biomedical lit-
erature has received attention, most of the previous EL
work focused on general news and social media domains
(e.g., [16, 15]). These EL algorithms can be divided into
two categories: non-collective and collective inference ap-
proaches. Non-collective methods usually rely on prior pop-
ularity and context similarity with supervised models [22,
31, 23]. Ranking scores for each concept mention are com-
puted individually. Collective approaches further leverage
the global coherence between concept mentions normally
through supervised or graph-based re-ranking models [17,
26, 10, 7, 12, 30, 20]. Collective inference methods address
the linking problem through maximizing the agreement be-
tween the text of the mention document and the context of
the entities of the knowledge base. Graph-base re-ranking
models typically collects linking agreement information from
training data and propagates the agreement information to
other nodes. Both existing non-collective and collective al-
gorithms require large amounts of manually-labeled entity
mentions in order to achieve about 85% linking accuracy for
the news domain [16, 15]. Finally, previous work mainly
focused on discovering knowledge from source texts, while
limited efforts have been made on exploiting the rich struc-
tures of other knowledge bases beyond Wikipedia. DBpedia
Spotlight [1] is the only system that leverages Semantic Web
data to link entities to DBpedia, a generic dataset derived
from Wikipedia.

In this paper, we demonstrate that entropy based col-
lective inference is crucial to acquire and organize deeper
knowledge with a higher coverage from the source. Together
with our novel utilization of the declaratively defined rich
structures in the merged ontologies with comprehensive text
descriptions, the whole framework carries rich enough evi-
dence for effective entity linking, without the needs of any
labeled data.

3. APPROACH
In this section we will present our detailed EL approach

to the biomedical domain.

3.1 Overview
In the discussion that follows, we first define some basic

concepts, notations, and preliminary background and then
give an overview of the EL system. The entity mentions
m ∈M are the prominent phrases in the full text of a scien-
tific paper. We consider all classes, properties, and individ-
uals as described in the ontologies e ∈ E to be the reference
entities, which are used to ground the entity mentions. Each
entity is described by a surface form dictionary that con-



Document

Entity
Mentions

Mention
Extraction

Context
Analysis

Knowledge
Base

Surface Form
Dictionary

Candidate
Retrieval

Candidate
Entities

Non-collective
Ranking

Collective
Inference

Final
Entities

Document
Graph

Figure 1: Approach Overview

tains all phrases matching its string. For example, the entity
“IKK” is an entry in E, whereas an occurrence of “IKK” in a
scientific paper is an entity mention. Furthermore, an occur-
rence of “IκB kinase” is one surface form of “IKK” because
it’s a synonym of “IKK”. The overall approach is depicted
in Figure 1. We first construct a knowledge base (described
in the following section 3.2). Next, given a textual docu-
ment d, we extract the entity mentions M : {m1,m2, ...mn}
as described in section 3.2. We then construct a graph rep-
resentation Gd = 〈V,R〉 for d, where V = {v1, v2, ...vn} is
the set of vertices, each vertex v represents an entity men-
tion in d, and R = {r1, r2, ...rn} is the set of edges. (Note:
Gd refers to the graph of document d whereas Gk refers
to the graph of the knowledge base.) The vertices v1 and
v2 are connected by an edge denoted as ε(v1, v2, r) if and
only if the entity mentions for v1 and v2 are related to each
other. Here, such a relation is obtained by analyzing the
document d. For this work, we extract relations based on
sentence-level or paragraph-level co-occurrence. Then, for
each entity mention m, we use the surface form dictionary
to locate a list of candidate entities c ∈ C for entity men-
tions in graph Gd and compute an importance score by the
non-collective approach detailed in section 3.5. Finally we
compute similarity scores for each entity mention/candidate
entity pair 〈m, c〉 and select the candidate with the highest
score as the appropriate entity for linking.

3.2 Knowledge Base Graph Construction

We utilize a very broad definition of a Knowledge Base
(KB). A Knowledge Base is a data set that contains some,
potentially limited, structured content along with unstruc-
tured content.

Using this broad definition, Wikipedia is a popular knowl-
edge base that is often used for entity linking because it
contains structured information such as titles, hyperlinks,
infoboxes as well as unstructured texts. However, in order
to take advantage of richer structures and domain knowl-
edge which are not offered by Wikipedia, we constructed
a knowledge base from 300 biology-related ontologies from
BioPortal1. Based on the rich structure contained in these
ontologies, we created a web of data (WOD). In the WOD,
each entity e is described as a set of triples t ∈ T . For
example, a triple ( :Nucleus, :PartOf, :CellComponent)
indicates that the entity “nucleus” is “part of ” the entity
“cell”.

Our expanded knowledge base E was constructed using
a graph-based approach. E consists of classes, individuals,
and properties in the aggregated ontologies. Each entity e
is regarded as a vertex in the knowledge graph Gk. Using
our WOD, each entity is connected to other entities via a
set of triples T . These connections are regarded as the edges
of Gk. For example, the entities “phosphorylating”, “IKK”,
and “IκB kinase activity” contained in the GeneOntology2

are treated as the vertices of our graph. The triples ( :IκB
kinase activity, :subClassOf, :phosphorylating) and ( :IκB
kinase activity, :relatedTo, :IKK ) are treated as edges be-
tween the vertex “IκB kinase activity” and other vertices in
our graph.

3.3 Mention Extraction
The focus of the paper is to link identified mentions to

the concepts in the knowledge base. Therefore, for identify-
ing prominent mentions from unstructured texts, we apply
various publicly available natural language processing tools.
First a name tagger [28] is used to extract entity mentions.
Regular expressions are used to join named entities that
might have been considered separate by looking for inter-
vening prepositions, articles, and punctuation marks. Then,
a shallow parser [27] is used to add noun phrase chunks to
the list of mentions. A parameter controls the minimum and
maximum number of chunks per mention (one and five by
default), and whether overlapping mentions are allowed.

3.4 Entity Candidate Retrieval
By analyzing the triples describing the entities, we also

construct a surface form dictionary 〈f, {e1 , e2...ek}〉 where
{e1, e2...ek} is the set of entities with surface form f . We an-
alyzed the following main properties: labels and names (e.g.
rdfs:label), synonyms (e.g. exact synonym from gene ontol-
ogy), aliases, and symbols (e.g. from Orphanet ontology),
providing us with more than 150 properties to construct
the surface form dictionary. During the candidate retrieval
process, we retrieve all entities with surface forms that are
similar to the mentions’ surface form, and considered them
as candidates for the mentions.

3.5 Non-Collective Entropy Rank
The candidate entities retrieved from the knowledge base

are pre-ranked using an entropy-based non-collective ap-
proach. The main idea of the algorithm is to assign the

2http://www.geneontology.org/
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Figure 2: Illustrative Example. In the document graph, entity mentions are circled. In the knowledge graph,
reference entities are bolded, the candidate entities with the highest ranks are circled with solid lines, and
candidates with lower ranks are circled with dashed lines. Boxes indicate intermediates.

entities with higher popularity a higher score. While enti-
ties in Wikipedia are universally connected with the same
type of link, entities in the ontologies are potentially con-
nected with many kinds of links that may have semantically
rich definitions. We can leverage this greater degree of speci-
ficity and assign different weights to edges described by dif-
ferent properties. For example, consider the triples ( :IKK,
:isCapableOf, :phosphorylation) and ( :IKK, :locatedIn,
:cytoplasm). Since “phosphorylation” and “cytoplasm” are

connected to “IKK” by different relations, we consider their
influence on the importance of “IKK” to be different.

To capture such differences in influence, we compute the
entropy of relations H(p) [29] as

H(p) = −
∑

op∈Op

Ψ(op) log(Ψ(op)) (1)

where p ∈ P is a property or relation that has a value
op ∈ Op or links to an object op ∈ Op and Ψ(op) is the
probability of obtaining o given the property p. The en-
tropy measure has been used in many ranking algorithms to
capture the salience of information [3, 4], therefore, in our
task, we used it to capture the saliency of a property. In the
previous example, p indicates“is capable of ”and“located in”
while o indicates “IKK” and “cytoplasm” respectively. Then
H(“iscapableof ′′) and H(“locatedin′′) are the influence fac-
tors between “IKK” and “phosphorylation”, and “IKK” and
“cytoplasm” respectively.

We then compute the salience score of candidate entities
using the following non-collective EntropyRank:

ER(c) =
∑

pc∈Pc

H(pc)
∑

ocp∈Oc
p

ER(ocp)

L(ocp)
(2)

where P c is the set of properties describing a candidate en-
tity c and L(ocp) is number of entities linked to ocp. The En-
tropyRank for each entity starts at 1 and is recursively up-
dated until convergence. This equation is similar to PageR-
ank [25], which gives higher ranks to the popular entities,
but we also take the difference of influence of neighbor nodes
into consideration.

As described previously, the candidate entities are retrieved
from the surface form dictionary based on the above salience
measure. Most often, the exact surface form match between
an entity mention and a candidate entity cannot be found.
However, our rank model allows partial surface form matches
with a penalty. Currently we use Jaccard Similarity to com-
pute partial match scores. For example, Jaccard Similarity
will be computed for mention “nucleus” and entity “neural
nucleus”. In the equation below, JS(m, e) is the Jaccard
Similarity score between the surface form of entity mention
m and the surface form of candidate entity c.

ER∗(m, c) = JS(m, c) · ER(c) (3)

3.6 Collective Inference
In the non-collective inference approach, each entity men-

tion is analyzed, retrieved, and ranked individually. Al-
though this approach performs well in many cases, some-
times incorrect entity mention/entity links are formed due to
the lack of context information. Therefore, we adopt a col-
lective inference approach, which analyzes relations among
multiple entity mentions and ranks the candidates simulta-
neously. For example, given the sentence that contains the
entity mentions “phosphorylating” and “IKK”, the collective
approach will analyze the two mentions simultaneously to
determine the best reference entities.



In Section 3.1, we presented how we construct the doc-
ument graph Gd. Using the connected Gd and candidate
entities retrieved from the non-collective approach, we can
compute the similarity between each entity mention m from
Gd and a candidate entity c from Gk. Both m and c are con-
nected to sets of neighbor nodes, which provide important
contextual descriptions for both m and candidate entity c,
respectively. We then use the following equation to compute
the similarity score:

SimF (m, c) = α ·ER∗(m, c) + β ·
∑

pc∈Pc

H(pc)
∑

n∈Oc
p∩Om

ER(n) (4)

Here, Oc
p ∩ Om is the set of neighbors with equivalent sur-

face form between the Gk subgraph for candidate c and
Gd subgraph for mention m. The parameters α and β are
used to adjust the effects of the candidate pre-ranking score
and the context information score on the overall similarity
score. Based on the optimization results reported by Zheng
et al. [33], we empirically set α = 15 and β = 8 for all ex-
periments. The equation captures two important ranking
intuitions: 1. the more popular a c is, the higher rank it will
be, as captured by ER, 2. the more similar between the Gk

subgraph for c and Gd subgraph for mention m, then higher
rank will be given to c, which is captured by latter part of
the equation.

To better describe the use of this system for the life sci-
ence domain, we provide an illustrative example in Figure 2.
For the example sentence provided, the document graph Gd

has vertices V that correspond to entity mentions M . For
this sentence-level collective inference approach, there ex-
ist edges between all vertices since these mentions co-occur
in the sentence. We then retrieve our knowledge graph
Gk from our knowledge base. Focusing our attention on
reference entity “STAT3”, a term-level search returns can-
didate “STAT3”. However, because “Activated STAT3” is
connected to more vertices of Gk, it is intuitive that this
candidate’s rank increases with collective inference. Fur-
thermore, although candidate “Neural Nucleus” is indirectly
linked to “Nerve Impulse” which is in turn linked to can-
didate “Nervous Tissue”, the isolation of “Neural Nucleus”
from candidates of other entities enables candidate entity
“Cell Nucleus” to obtain the highest rank.

4. EXPERIMENTS
In this section we present the results of our EL method

and detailed analysis done by biomedical domain experts.

4.1 Data and Scoring Metric
To illustrate the use of this approach in the life sciences

domain, we analyzed the signal transduction pathway model
developed in Lipniack et al. [18]. This paper is extensively
cited and backed by a relatively complete set of experimen-
tal observations, making it a good candidate for testing
our approach. We frequently refer to this reference with
the descriptor “Lipniacki” throughout the rest of this paper
to avoid ambiguity. From “Lipniacki”, the domain experts
in our research team identified 318 mentions of 97 unique
prominent entities from 77 sentences and link these mentions
to the knowledge base constructed from 300 biology-related
ontologies (as described in section 3.2). Among all of the
ontologies, there are more than 2 million entities and more
than 50 million factual statements. These ontologies were

generated and maintained by a combination of domain and
knowledge representation experts.

Human annotation focused on nouns and relationships
between nouns (e.g. verbs). Nouns were fairly easy to
identify for domain-literate persons. Many biological terms
have very specific definitions, therefore all entity mentions
will have equivalent meanings. For example, “NF-κB” is a
proper noun referring to a specific protein in a cell. An-
other example is the term “transcription”, which refers to
the specific process of synthesizing mRNA from a DNA tran-
script. These situations occur quite often in the nouns an-
notated. Since the Lipniacki paper is in the primary litera-
ture, there were a few terms that were defined explicitly in
the paper that are not commonplace in the literature. For
example, Lipniacki defines the proper noun IKKa, the acti-
vated form of IKK. This author-defined word is easy for a
domain-literate person to annotate because the definition is
given.

Whereas important nouns were fairly easy to identify,
verbs remained a challenge. Some of the verbs have spe-
cific definitions. For example, “phosphorylates”describes the
process of adding a phosphate group to a protein. However,
distilling the definition of other verbs was more challenging.
For example, the term “transformed” as used in the fourth
sentence of the Lipniacki abstract refers to a vague process
by which IKKn becomes IKKa. This verb is important be-
cause it describes a relationship between two terms in the
model, but an explicit definition is quite vague due to either
incomplete biological knowledge of the process or an attempt
by the author to only present the most relevant information
for model building.

The mention extraction component associated with both
the UIUC Wikifier and our system achieved 63% Precision,
65% Recall and 64% F-Measure. In this paper we focus
on developing linking techniques. We use the linking accu-
racy [16, 15] to evaluate the linking performance. For each
correctly extracted mention, we check whether or not it is
linked to the correct entries in the KB. endcenter

4.2 Impact of Collective Inference
To better understand the performance of our wikification

system on this new domain, we studied the performance for
different inference levels:

1. Mention level: mentions are queried individually and
no context information is provided (without collective
inference).

2. Sentence level: mentions from the same sentence are
analyzed simultaneously (collective inference utilized).

3. Paragraph level: mentions from the same paragraph
are analyzed simultaneously (collective inference uti-
lized).

Table 1: Result of Collective Inference

Inference Level Linking Accuracy

Mention 73.08%
Sentence 83.17%
Paragraph 65.87%



Table 1 presents the results. The improvement from mention
level to sentence level illustrates that leveraging the relations
among entities presented in the KB via collective inference
is beneficial. However, we observe a performance drop from
sentence level to paragraph level. By including more men-
tions, we may potentially introduce unrelated information
and noise when compared to the sentence level. For exam-
ple“phosphorylating”was identified correctly at the sentence
level, but misidentified at the paragraph level in one exam-
ple. The broader paragraph level search included terms such
as “NF-κB, “signaling pathway”, and “A20” which are not
connected to “phosphorylating” in the aggregated ontologies.
There are other examples which were correctly identified at
the paragraph level but not at the sentence level, however,
these were fewer than those where the sentence level pro-
duced an adequate link and the paragraph level did not.

When we are given a single term for disambiguation, we
lack context information. The simple popularity-based non
collective disambiguation algorithm will always return the
most popular referent entity regardless of the context. How-
ever, in the biomedical domain, the same mention can refer
to different entities in different contexts. On the other hand,
collective inference takes advantage of the provided con-
text information during the disambiguation process, which
is aligned with the way domain experts disambiguate the
terms. For example, the entity “phosphorylating” is misiden-
tified at the term level, but is properly identified at the para-
graph level. At the mention level, ‘‘phosphorylating” is iden-
tified as“glyceraldehyde-3-phosphate dehydrogenase (GAPDH)”,
a specific protein that carries out a well-studied enzymatic
process in cellular metabolism. Furthermore, this protein
is responsible for adding a phosphate to a small molecule
rather than a protein. However, at the paragraph level,
“phosphorylating” is correctly assigned to the general pro-
cess of adding a phosphate group to a protein. In the con-
text of an intracellular signaling cascade, phosphorylating a
protein typically alters the protein from an inactive to an
active form. Misidentifying “phosphorylating” as a specific
enzyme (proper noun) rather than a cellular process (verb)
may incorrectly state that “GADPH ” is involved in this sig-
naling cascade and/or miss an important event in the signal
cascade, thereby confusing the reader.

At the sentence level, some mentions of “phosphorylating”
are identified correctly, whereas other mentions are misiden-
tified. For example, in section 2.0 of Lipniacki,

“In this form it is capable of phosphorylating IκBα,
which in turn leads to its degradation.”

the system misidentified“phosphorylating”. In this sentence,
since IκBα is the object of phosphorylation and GADPH
does not perform this phosphorylation, a domain-literate
person can readily tell that the definition provided by the
algorithm is inaccurate. Furthermore, because 1.) IκBα is
a protein, 2.) the sentence discusses the actions of phospho-
rylation or degradation of this protein, and 3.) the queried
ontologies do not contain specific entries related to this spe-
cific phosphorylation process, it is intuitive to a domain-
literate person that the collective inference should help the
correct linking of ”phosphorylating”. In the same paragraph
of Lipniacki,

“The newly synthesized IκBα again inhibits NF-κB,
while A20 inhibits IKK by catalysing its transformation

into another inactive form, in which it is no longer capable
of phosphorylating IκBα.”

the system correctly identified “phosphorylating”. In this
sentence, since 1.) IKK is a kinase (a protein capable of
phosphorylating a specific entity or group of entities), and
2.) IκBα, NF-κB, A20, and IKK are all proteins, it is in-
tuitive to a domain-literate person that collective inference
would return a correct match.

This relation between“phosphorylating”and“IKK”is cap-
tured and modeled in GeneOntology3 by biology ontologists.
The ontology states that “phosphorylating” is related to an
activity that involves “IκB kinase”, a synonym for “IKK”.
Our collective inference algorithm leverages this knowledge
during the ranking computation and promotes the initially
under-ranked description from GeneOntology to the highest
rank when the concept “IKK” is presented in the sentence
level.

4.3 Comparison with State-of-the-art
To evaluate the performance of our approach, we compare

the ontology-based system with [6], one of the current state-
of-the-art EL systems trained from news-related data. We
compare the linking accuracy scores in Table 2. From the ta-

Table 2: Performance of the Wikifiers

Wikifier
Correct
Links

Total
Links

Linking
Accuracy

(Chan and Roth, 2013) 84 113 74.34%
Our Approach 173 208 83.17%

ble, we can see that our system significantly outperforms [6]
by a wide margin. One way to solve this domain-mismatch
problem is to train a Wikifier using a biology-related train-
ing dataset. However such a dataset would be expensive and
time consuming to generate. For example, the news train-
ing dataset used by [6] took a significant amount of time
to create and it would be unlikely that this effort would
be repeated for a new domain. Furthermore, datasets for
a biomedical domain, unlike news-related datasets, require
a domain expert with specialized knowledge, which further
complicates the task of developing large training sets.

In contrast to this approach, we used biomedical ontolo-
gies and a novel unsupervised algorithm for this domain.
The advantage of the proposed work is that there are many
related ontologies published on the Web by the domain com-
munities such as BioPortal1. Since the system relies heavily
on the related ontologies, the system performance improves
with the quality of the ontologies. Even though generating
high quality ontologies is expensive, there are many ongo-
ing efforts to capture and model biology-related knowledge
such as the continued work on the Gene Ontology3. We can
easily leverage these works to improve the system.

4.4 Remaining Challenges
Our approach significantly outperforms state-of-the-art with-

out using any labeled data. However, there are several re-
maining challenges, including:

1. As previously mentioned, our EL system is not able
to decide whether or not it returns a link. It’s a challeng-



ing research question to optimize the threshold to determine
whether a mention is linkable or not [5].

2. Failure to detect biomedical concept mentions for link-
ing to the knowledge base constitute about 22% of errors
of [6]. Since the biomedical ontologies contain a relatively
complete taxonomy dictionary for the domain concepts in-
cluding synonyms, alias names, and abbreviations, we can
leverage this information and apply a dictionary based ap-
proach to detect relevant concepts.

3. Although we utilize a large amount of ontologies which
capture biomedical knowledge, some facts and relations among
concepts are not clearly defined. For example, the fact that
“eukaryotic transcription” takes place only within the “cell
nucleus” is not clearly presented. Instead, a vague “related
to” relation between “eukaryotic transcription” and “cell nu-
cleus” is presented in the ontologies.

4. Many of the processes taking place in signaling path-
ways are dependent upon another. For example, it is very
common that a protein is phosphorylated which turns it into
its active form, which is needed to activate another protein
and so forth. As such, there is often a cascade of events that
all depend upon each other. While it is known that these
types of relationships exist, we currently do not make use of
this knowledge.

5. The current disambiguation algorithm assumes that
phrases from the same sentence or same paragraph are re-
lated to each other, however such assumptions can poten-
tially undermine the EL performance. For example, we ob-
serve that including mentions from the same paragraph as
context information, our performance drops when compared
to only including mentions from the same sentence. Better
collaborators for a target entity may be obtained by deep se-
mantic parsing techniques such as Dependency Parsing and
Semantic Role Labeling.

5. CONCLUSIONS AND FUTURE WORK
We have developed an effective Entity Linking system

to automatically identify and link prominent mentions in
unstructured biomedical literature to ontologies. As more
and richer ontologies are being constructed and accessible
in many scientific domains, we feel the time is now ripe
to explore some novel methods to adapt mature text min-
ing techniques to automatically enrich knowledge for scien-
tific papers. By a thorough pilot study, we have demon-
strated that it’s possible to skip the tedious manual anno-
tation by incorporating rich structures in ontologies in an
unsupervised collective inference framework. The proposed
approach would save scientists concerned with staying in-
formed about research development an enormous amount of
time. In the future, we plan to apply semantic parsing to
better select mention collaborators for collective inference,
and leverage other existing Semantic Web technologies such
as semantic reasoning to improve the linking quality.

6. ACKNOWLEDGEMENT
This work was supported by the U.S. Army Research Lab-

oratory under Cooperative Agreement No. W911NF-09-2-
0053 (NS-CTA), U.S. NSF CAREER Award under Grant
IIS-0953149, U.S. DARPA Award No. FA8750-13-2-0041 in
the Deep Exploration and Filtering of Text (DEFT) Pro-
gram, Google Research Award and RPI faculty start-up
grant, DARPA SMISC Program. The views and conclu-

sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstand-
ing any copyright notation here on.

7. REFERENCES
[1] A. B. Abacha and P. Zweigenbaum. Medical entity

recognition: A comparison of semantic and statistical
methods. In Proceedings of BioNLP 2011 Workshop,
2011.

[2] L. M. Akella, C. N. Norton, and H. Miller. NetiNeti:
Discovery of scientific names from text using machine
learning methods. BMC Bioinformatics, 13(1):211,
2010.

[3] J. Biesiada, W. Duch, A. Kachel, K. Maczka, and
S. Palucha. Feature ranking methods based on
information entropy with parzen windows. In
International Conference on Research in
Electrotechnology and Applied Informatics, volume 1,
page 1, 2005.

[4] N. Bruce and J. Tsotsos. Saliency based on
information maximization. In Advances in neural
information processing systems, pages 155–162, 2005.

[5] T. Cassidy, H. Ji, L. Ratinov, A. Zubiaga, and
H. Huang. Analysis and enhancement of Wikification
for microblogs with context expansion. In Proceedings
of COLING 2012, 2012.

[6] X. Cheng and D. Roth. Relational inference for
Wikification. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
2013.

[7] S. Cucerzan. TAC entity linking by performing
full-document entity extraction and disambiguation.
In Proc. TAC 2011 Workshop, 2011.

[8] H. Dai, P. Lai, and R. Tsai. Multistage gene
normalization and SVM-based ranking for protein
interactor extraction in full-text articles. IEEE/ACM
Transactions on Computational Biology and
Bioinformatics (TCBB), 7(3):412–420, 2010.

[9] H. Fang, K. Murphy, Y. Jin, J. S. Kim, and P. S.
White. Human gene name normalization using text
matching with automatically extracted synonym
dictionaries. In Proceedings of the Workshop on
Linking Natural Language Processing and Biology:
Towards Deeper Biological Literature Analysis, pages
41–48, 2006.

[10] P. Ferragina and U. Scaiella. TAGME: on-the-fly
annotation of short text fragments (by wikipedia
entities). In Proceedings of the 19th ACM
international conference on Information and
knowledge management, CIKM ’10, 2010.

[11] M. Frisch, B. Klocke, M. Haltmeier, and K. Frech.
LitInspector: literature and signal transduction
pathway mining in PubMed abstracts. Nucleic acids
research, 37(suppl 2):W135–W140, 2009.

[12] Y. Guo, W. Che, T. Liu, and S. Li. A graph-based
method for entity linking. In Proc. IJCNLP2011, 2011.

[13] L. Hirschman, M. Colosimo, A. Morgan, and A. Yeh.
Overview of BioCreAtIvE Task 1B: Normalized gene
lists. BMC Bioinformatics, 7(3):412–420, 2005.



[14] L. Hunter and K. Cohen. Biomedical language
processing: Perspective what’s beyond PubMed? Mol.
Cell., 21(5):589–594, 2006.

[15] H. Ji, R. Grishman, and H. Dang. Overview of the
TAC 2011 knowledge base population track. In Text
Analysis Conference (TAC) 2011, 2011.

[16] H. Ji, R. Grishman, H. Dang, K. Griffitt, and J. Ellis.
Overview of the TAC 2010 knowledge base population
track. In Text Analysis Conference (TAC) 2010, 2010.

[17] S. Kulkarni, A. Singh, G. Ramakrishnan, and
S. Chakrabarti. Collective annotation of Wikipedia
entities in web text. In KDD, 2009.

[18] T. Lipniacki, P. Paszek, A. R. Brasier, B. Luxon, and
M. Kimmel. Mathematical model of NF-κB regulatory
module. Journal of Theoretical Biology,
228(2):195–215, May 2004.

[19] B. Liu, L. Qian, H. Wang, and G. Zhou.
Dependency-driven feature-based learning for
extracting protein-protein interactions from
biomedical text. In Proc. COLING, 2010.

[20] X. Liu, Y. Li, H. Wu, M. Zhou, F. Wei, and Y. Lu.
Entity linking for tweets. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2013.

[21] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and
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