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Abstract

In this paper we tackle a challenging name
tagging problem in an emergent setting - the
tagger needs to be complete within a few
hours for a new incident language (IL) us-
ing very few resources. Inspired by observing
how human annotators attack this challenge,
we propose a new expectation-driven learning
framework. In this framework we rapidly ac-
quire, categorize, structure and zoom in on IL-
specific expectations (rules, features, patterns,
gazetteers, etc.) from various non-traditional
sources: consulting and encoding linguistic
knowledge from native speakers, mining and
projecting patterns from both mono-lingual
and cross-lingual corpora, and typing based on
cross-lingual entity linking. We also propose
a cost-aware combination approach to com-
pose expectations. Experiments on seven low-
resource languages demonstrate the effective-
ness and generality of this framework: we are
able to setup a name tagger for a new IL within
two hours, and achieve 33.8%-65.1% F-score.

1 Introduction: “Tibetan Room”

In many emergent situations such as disease out-
breaks and natural disasters, there is great demand
to rapidly develop a Natural Language Processing
(NLP) system, such as name tagger, for a “surprise”
Incident Language (IL) with very few resources.
Traditional supervised learning methods that rely on
large-scale manual annotations would be too costly.
Let’s start by investigating how a human would

discover information in a foreign IL environment.
When we are in a foreign country, even if we don’t
know the language, we would still be able to guess

the word “gate” from the airport broadcast based on
its frequency and position in a sentence; guess the
word “station” by pattern mining of many subway
station labels; and guess the word “left” or “right”
from a taxi driver’s GPS speaker by matching move-
ment actions. We designed a “Tibetan Room” game,
similar to “Chinese Room” (Searle, 1980), by ask-
ing a human user who doesn’t know Tibetan to find
persons, locations and organizations from some Ti-
betan documents. We designed an interface where
test sentences are presented to the player one by one.
When the player clicks token, the interface will dis-
play up to 100 manually labeled Tibetan sentences
that include this token. The player can also see trans-
lations of some common words and a small gazetteer
of common names (800 entries) in the interface.
14 players who don’t know Tibetan joined the

game. Their name tagging F-scores ranged from 0%
to 94%. We found that good players usually bring
in some kind of “expectations” derived from their
own native languages, or general linguistic knowl-
edge, or background knowledge about the scenario.
Then they actively search, confirm, adjust and up-
date these expectations during tagging. For exam-
ple, they know from English that location names are
often ended with suffix words such as “city” and
“country”, so they search for phrases starting or end-
ing with the translations of these suffix words. After
they successfully tag some seeds, they will continue
to discover more names based on more expectations.
For example, if they already tagged an organization
name A, and now observe a sequence matching a
common English pattern “[A (Organization)]’s [Ti-
tle] [B (Person)]”, they will tag B as a person name.
And if they know the scenario is about Ebola, they



2

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

NAACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

will be looking for a phrase with translation simi-
lar to “West Africa” and tag it as a location. Sim-
ilarly, based on the knowledge that names appear
in a conjunction structure often have the same type,
they propagate high-confidence types across multi-
ple names. They also keep gathering and synthe-
sizing common contextual patterns and rules (such
as position, frequency and length information) about
names and non-names to expand their expectations.
For example, after observing a token frequently ap-
pearing between a subsidiary and a parent organiza-
tion, they will predict it as a preposition similar to
“of ” in English, and tag the entire string as a nested
organization.
Based on these lessons learned from this game, we

propose to automatically acquire and encode expec-
tations about what will appear in IL data (names, pat-
terns, rules), and encode those expectations to drive
IL name tagging. We explored various ways of sys-
tematically discovering and unifying latent and ex-
pressed expectations from nontraditional resources:

• Language Universals: Language-independent
rules and patterns;

• Native Speaker: Interaction with native speak-
ers through a machine-readable survey and su-
pervised active learning;

• Prior Mining: IL entity prior knowledge min-
ing from both mono-lingual and cross-lingual
corpora and knowledge bases;

Furthermore, in emergent situations these expec-
tations might not be available at once, and they may
have different cost, so we need to organize and prior-
itize them to yield optimal performance within given
time bounds. Therefore we also experimented with
various cost-aware composition methods with the
input of acquired expectations, plus a time bound
for development (1 hour, 2 hours), and the output
as a wall-time schedule that determines the best se-
quence of applying modules and maximizes the use
of all available resources. Experiments on seven
low-resource languages demonstrate that our frame-
work can create an effective name tagger for an IL
within a couple of hours using very few resources.

2 Starting Time: Language Universals

First we use some language universal rules,
gazetteers and patterns to generate a binary feature
vector F = {f1, f2, ...} for each token. Table 1

shows these features along with examples. An
identification rule is rI =< TI , f = {fa, fb, ...} >
where TI is a “B/I/O” tag to indicate the beginning,
inside or outside of a name, and {fa, fb, ...} is
a set of selected features. If the features are all
matched, the token will be tagged as TI . Similarly, a
classification rule is rC =< TC , f = {fa, fb, ...} >,
where TC is “Person/Organization/Location”.
These rules are triggered in order, and some ex-
amples are as follows: <B, {AllUppercased}>,
<PER, {PersonGaz}>, <ORG, {Capitalized,
LongLength}> and etc.

3 Expectation Learning

3.1 Approach Overview
Figure 1 illustrates our overall approach of acquiring
various expectations, by simulating the strategies hu-
man players adopted during the Tibetan Room game.
Next we will present details about discovering ex-
pectations from each source.

Native Speaker

Expectation 
Acquisition Methods

Time 0 Time 1 Time 2

IL Documents

Universal 
Name Tagger

Native Speaker

Unsupervised Method

Supervised Method

Data 
SamplingAnnotating

CRF 
Model

Expectation Driven 
Tagger at Time 1

CRF Name Tagger 
at Time 1

Expectation Driven 
Tagger at Time 2

CRF Name Tagger 
at Time 2

Data 
SamplingAnnotating

CRF 
Model

Resources

Expectations

Expectation 
Acquisition Methods

More 
Expectations

Available Resources Expectations

IL Monolingual 
Corpora

IL to English 
Parallel Data

English NER 
Patterns

Native Speaker

Expectation Acquisition

IL Pattern Mining

Pattern Translation

IL Language Survey

English Information Extraction

Word Alignment

English KB 
(DBpedia)

IL to English Lexicons

IL Specific Rules

IL Name Patterns

Gazetteers

Entity Linker Typing

Comparable 
English Corpora

Figure 1: Expectation Driven Name Tagger
Overview

3.2 Survey with Native Speaker
The best way to understand a language is to con-
sult people who speak it. We introduce a human-in-
the-loop process to acquire knowledge from native
speakers. To meet the needs in the emergent set-
ting, we design a comprehensive survey that aims
to acquire a wide-range of IL-specific knowledge
from native speakers in an efficient way. The sur-
vey categorizes questions and organizes them into a
tree structure, so that the order of questions is cho-
sen based on the answers of previous questions. The
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Features Examples (Feature name is underlined)
in English
Gazetteer

- PerGaz: person (472, 765); LocGaz: location (211, 872);OrgGaz: organization (124, 403); Title (889);NoneName (2, 380).

Case - Capitalized; - AllUppercased; -MixedCase
Punctuation - IternalPeriod: includes an internal period
Digit - Digits: consisted of digits
Length - LongLength: a name including more than 4 tokens is likely to be an ORG
TF-IDF - TF-IDF: if a capitalized word appears at the beginning of a sentence, and has a low TF-IDF, then it’s unlikely to be a name
Patterns - Pattern1: “Title < PER Name >”

- Pattern2: “< PERName >, 00∗,” where 00 are two digits
- Pattern3: “[< Namei > ...], < Namen − 1 >< singleterm >< Namen >” where all names have the same type.

Multi-
occurrences

- MultipleOccurrence: If a word appears in both uppercased and lowercased forms in a single document, it’s unlikely to be a
name.

Table 1: Universal Name Tagger Features

survey answers are then automatically translated into
rules, patterns or gazetteers in the tagger. Some ex-
ample questions are shown in Table 2.

3.3 Mono-lingual Expectation Mining

We use a bootstrapping method to acquire IL pat-
terns from unlabeled mono-lingual IL documents.
Following the same idea in (Agichtein and Gravano,
2000; Collins and Singer, 1999), we first use names
identified by high-confident rules as seeds, and gen-
eralize patterns from the contexts of these seeds.
Then we evaluate the patterns and apply high-quality
ones to find more names as new seeds. This process
is repeated iteratively 1.
We define a pattern as a triple <

left, name, right >2, where name is a name, left
and right are context vectors with weighted terms.
For example, from a Hausa sentence “gwamnatin
kasar Sin ta samar wa kasashen yammacin Afirka ...
(the Government of China has given ... products to
the West African countries)”, we can discover a pat-
tern < {< gwamnatin(government), 0.5 >,<
kasar(country), 0.6 >}, {< Sin(China), 0.5 >
}, {< ta(by), 0.2 >} >. This pattern matches
strings like “gwamnatin kasar Fiji by (by the
government of Fiji)”.
For any two triples ti =< li, namei, ri > and

tj =< lj , namej , rj >, we compute their similarity
by:

Sim(ti, tj) = li · lj + ri · rj

We use this similarity measurement to cluster all
triples and select the centroid triples in each cluster
as candidate patterns.

1We empirically set the number of iterations as 2 in this pa-
per.

2Three tokens before and after

Similar to (Agichtein and Gravano, 2000), we
evaluate the quality of a candidate pattern P by:

Conf(P ) =
Ppositive

(Ppositive + Pnegative)

,where Ppositive is the number of positive matches
for P and Pnegative is the number of negative
matches. Due to the lack of syntactic and seman-
tic resources to refine these lexical patterns, we set a
conservative confidence threshold 0.9.

3.4 Cross-lingual Expectation Projection
Name tagging research has been done for high-
resource languages such as English for over twenty
years, so we have learned a lot about them. We col-
lected 1,362 patterns from English name tagging lit-
erature. Some examples are listed below:

• < {}, {PER}, {< say >,< . >} >

• < {< headquarter >,< in >}, {LOC}, {} >

• < {< secretary >,< of >}, {ORG}, {} >

• < {< in >,< the >}, {LOC}, {< area >} >

Besides the static knowledge like patterns, we
can also dynamically acquire expected names from
topically-related English documents for a given
IL document. We apply the Stanford name tag-
ger (Finkel et al., 2005) to the English documents
to obtain a list of expected names. Then we translate
the English patterns and expected names to IL.When
there is no human constructed English-to-IL lexicon
available, we derive a word-for-word translation ta-
ble from a small parallel data set using the GIZA++
word alignment tool (Och and Ney, 2003). We also
convert IL text to Latin characters based on Unicode
mapping3, and then apply Soundex code (Mortimer
and Salathiel, 1995; Raghavan and Allan, 2004) to

3http://www.ssec.wisc.edu/ tomw/java/unicode.html
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True/False Questions
1. The letters of this language have upper and lower cases
2. The names of people, organizations and locations start with a capitalized (uppercased) letter
3. The first word of a sentence starts with a capitalized (uppercased) letter
4. Some periods indicate name abbreviations, e.g., St. = Saint, I.B.M. = International Business Machines.
5. Locations usually include designators, e.g., in a format like “country United states”, “city Washington”
6. Some prepositions are part of names
Text input
1. Morphology: please enter preposition suffixes as many as you can (e.g. “’da” in “Ankara’da yaşıyorum (I live in Ankara)” is a
preposition suffix which means “in”).
Translation
1. Please translate the following English words and phrases:
- organization suffix: agency, group, council, party, school, hospital, company, office, ...
- time expression: January, ..., December; Monday, ..., Sunday; ...

Table 2: Survey Question Examples

find the IL name equivalent that shares the most sim-
ilar pronunciation as each English name. For exam-
ple, the Bengali name “টিন ে য়ার” and “Tony Blair”
have the same Soundex code “T500 B460”.

3.5 Mining Expectations from KB

In addition to unstructured documents, we also try to
leverage structured English knowledge bases (KBs)
such as DBpedia4. Each entry is associated with a
set of types such as Company, Actor and Agent.
We utilize the Abstract Meaning Representation cor-
pus (Banarescu et al., 2013) which contains both en-
tity type and linked KB title annotations, to automat-
ically map 9, 514 entity types in DBPedia to three
main entity types of interest: Person (PER), Loca-
tion (LOC) and Organization (ORG).
Then we adopt a language-independent cross-

lingual entity linking system (Wang et al., 2015)
to link each IL name mention to English DBPe-
dia. This linker is based on an unsupervised quan-
tified collective inference approach. It constructs
knowledge networks from the IL source documents
based on entity mention co-occurrence, and knowl-
edge networks from KB. Each IL name is matched
with candidate entities in English KB using name
translation pairs derived from inter-lingual KB links
inWikipedia and DBPedia. We also apply the word-
for-word translation tables constructed from paral-
lel data as described in Section 3.4 to translate some
uncommon names. Then it performs semantic com-
parison between two knowledge networks based on
three criteria: salience, similarity and coherence. Fi-
nally we map the DBPedia types associated with the

4http://dbpedia.org

linked entity candidates to obtain the entity type for
each IL name.

4 Supervised Active Learning

We anticipated that not all expectations can be en-
coded as explicit rules and patterns, or covered by
projected names, therefore for comparison we in-
troduce a supervised method with pool-based ac-
tive learning to learn implicit expectations (features,
new names, etc.) directly from human data annota-
tion. We exploited basic lexical features including
ngrams, adjacent tokens, casing information, punc-
tuations and frequency to train a Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001) based on
model through active learning.
We segment documents into sentences and use

each sentence as a training unit. Let x∗b be the most
informative instance according to a query strategy
ϕ(x), which is a function used to evaluate each in-
stance x in the unlabeled pool U . Algorithm 1 illus-
trates the procedure.

Algorithm 1 Pool-based Active Learning
1: L← labeled set, U ← unlabeled pool
2: ϕ(·)← query strategy, B ← query batch size
3: M ← maximum number of tokens
4: while Length(L)< M do
5: θ = train(L);
6: for b ∈ {1, 2, ..., B} do
7: x∗b = argmaxx∈U ϕ(x)
8: L = L ∪ {x∗b , label(x∗b)}
9: U = U − x∗b
10: end for
11: end while

We use ϕSE to represent how informative a sen-
tence is, defined as sentence entropy (SE):
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ϕSE(x) = −
T∑

t=1

M∑
m=1

Pθ(yt = m)logPθ(yt = m)

, where T is the length of x, m ranges over all pos-
sible token labels and Pθ(yt = m) is the probability
when yt is tagged asm.

5 Cost-aware Combination

Anew requirement for IL name tagging is aLinguis-
tic Workflow Generator, which can generate an
activity schedule to organize and maximize the use
of acquired expectations to yield optimal F-scores
within given time bounds. Therefore, the input to
the IL name tagger is not only the test data, but also
a time bound for development (1 hour, 2 hours, 24
hours, 1 week, 1 month, etc.).
Figure 2 illustrates our cost-aware expectation

composition approach. Given some IL documents
as input, as the clock ticks, the system delivers name
tagging results at time 0 (immediately), time 1 (e.g.,
in one hour) and time 2 (e.g., in two hours). At time
0, name tagging results are provided by the universal
tagger described in Section 2. During the first hour,
we can either ask the native speaker to annotate a
small amount of data for supervised active learning
of a CRFs model, or fill in the survey to build a rule-
based tagger. We estimated the confidence value of
each expectation-driven rule based on a small de-
velopment set. When the results of two taggers are
conflicting, if the applied rule has high confidence
we will trust its output, otherwise adopt the CRFs
model’s output.

6 Experiments

In this section we will present our experimental de-
tails, results and observations.

6.1 Data

We evaluate our framework on seven low-resource
incident languages: Bengali, Hausa, Tagalog, Tamil,
Thai, Turkish and Yoruba, using the ground-
truth name tagging annotations from the DARPA
LORELEI program 5. Table 3 shows data statistics.

5http://www.darpa.mil/program/low-resource-languages-
for-emergent-incidents

Language IL Test
Docs

Name Unique
Name

IL Dev.
Docs

IL-English
Docs

Bengali 100 4,713 2,820 12,495 169
Hausa 100 1,619 950 13,652 645
Tagalog 100 6,119 3,375 1,616 145
Tamil 100 4120 2,871 4,597 166
Thai 100 4,954 3,314 10,000 191
Turkish 100 2,694 1,323 10,000 484
Yoruba 100 3,745 2,337 427 252

Table 3: Data Statistics

6.2 Cost-aware Overall Performance

We test with three checking points: starting time,
within one hour, and within two hours. Based on the
combination approach described in Section 5, we can
have three possible combinations of the expectation-
driven learning and supervised active learning meth-
ods during two hours: (1) expectation-driven learn-
ing + supervised active learning; (2) supervised ac-
tive learning + expectation-driven learning; and (3)
supervised active learning for two hours. Figure 4
compares the overall performance of these combi-
nations for each language.
We can see that our approach is able to rapidly

set up a name tagger for an IL and achieves promis-
ing performance. During the first hour, there is no
clear winner between expectation-driven learning or
supervised active learning. But it’s clear that super-
vised active learning for two hours is generally not
the optimal solution. Using Hausa as a case study,
we take a closer look at the supervised active learn-
ing curve as shown in Figure 3. We can see that su-
pervised active learning based on simple lexical fea-
tures tends to converge quickly. As time goes by it
will reach its own upper-bound of learning and gen-
eralizing linguistic features. In these cases our pro-
posed expectation-driven learning method can com-
pensate by providing more explicit and deeper IL-
specific linguistic knowledge.

6.3 Comparison of Expectation Discovery
Methods

Table 4 shows the performance gain of each type of
expectation acquisition method. IL gazetteers cov-
ered some common names, especially when the uni-
versal case-based rules failed at identifying names
from non-Latin languages. IL name patterns were
mainly effective for classification. For example,
the Tamil name “க ேதாலி க சி ய
வ கியல (Catholic Syrian Bank)” was classi-
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Figure 2: Cost-aware Expectation Composition

Figure 3: Hausa Supervised Active Learning Curve

fied as an organization because it ends with an or-
ganization suffix word “வ கியல (bank)”. The
patterns projected from English were proven very ef-
fective at identifying name boundaries. For exam-
ple, some non-names such as titles are also capital-
ized in Turkish, so simple case-based patterns pro-
duced many spurious names. But projected patterns
can fix many of them. In the following Turkish sen-
tence, “Ancak Avrupa Birliği Dış İlişkiler Sorum-
lusu Catherine Ashton,...(But European Union for-
eign policy chief Catherine Ashton,...)”, among all
these capitalized tokens, after we confirmed “Avrupa
Birliği (European Union)” as an organization and
“Dış İlişkiler Sorumlusu (foreign policy chief)” as
a title, we applied a pattern projected from English
“[Organization] [Title] [Person]” and successfully
identified “Catherine Ashton” as a person. Cross-
lingual entity linking based typing successfully en-
hanced classification accuracy, especially for lan-
guages where names often appear the same as their
English forms and so entity linking achieved high ac-
curacy. For example, “George Bush” keeps the same
in Hausa, Tagalog and Yoruba as English.

6.4 Impact of Supervised Active Learning

Figure 5 shows the comparison of supervised active
learning and passive learning (random sampling in
training data selection). We asked a native speaker
to annotate Chinese news documents in one hour,
and estimated the human annotation speed approxi-
mately as 7,000 tokens per hour. Therefore we set
the number of tokens as 7,000 for one hour, and
14,000 for two hours. We can clearly see that super-
vised active learning significantly outperforms pas-
sive learning for all languages, especially for Tamil,
Tagalog and Yoruba. Because of the rich morphol-
ogy in Turkish, the gain of supervised active learn-
ing is relatively small because simple lexical fea-
tures cannot capture name-specific characteristics
regardless of the size of labeled data. For example,
some prepositions (e.g., “nin (in)”) can be part of
the names, so it’s difficult to determine name bound-
aries, such as “<ORG Ludian bölgesi hastanesi>nin
(in <ORG Ludian Hospital>)”

6.5 Remaining Error Analysis

Table 5 presents the detailed break-down scores
for all languages. We can see that name identifi-
cation, especially organization identification is the
main bottleneck for all languages. For example,
many organization names in Hausa are often very
long, nested or all low-cased, such as “makaran-
tar horas da Malaman makaranta ta Bawa Jan
Gwarzo (Bawa JanGwarzoMemorial Teachers Col-
lege)” and “kungiyar masana’antu da tattalin arziki
ta kasar Sin (China’s Association of Business and
Industry)”.
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(a) Bengali (b) Hausa

(c) Tamil (d) Tagalog

(e) Thai (f) Turkish

(g) Yoruba
Figure 4: Comparison of methods combining expectation-driven learning and supervised active learning
given various time bounds
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Methods Bengali Hausa Tamil Tagalog Thai Turkish Yoruba
Universal Rules 4.1 26.5 0.0 30.2 2.2 12.4 17.1
+IL Gazetteers 29.7 32.1 21.8 34.3 18.9 17.3 26.9
+IL Name Patterns 31.2 33.8 22.9 35.1 18.9 19.1 28.0
+IL to English Lexicons 31.3 35.2 24.0 38.0 20.5 19.6 29.4
+KB Linking based Typing 34.0 44.8 25.1 51.1 20.7 24.2 35.1
+IL Rules and Gazetteers 34.8 48.3 26.0 51.3 21.7 24.4 36.0

Table 4: Contributions of Various Expectation Discovery Methods (F-score %)
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Table 1

ben (time 1) ben (time 2) hau (time1) hau (time2) tam (time1) tam (time2) tgl (time1) tgl (time2) tha (time1) tha (time2) tur (time1) tur (time2) yor (time1) yor (time2)

Passive 18.7 22.5 34.9 43.8 10.2 16.5 37.8 49.7 14.3 20.9 23.1 32.5 21.3 32.9
Active 30.2 34.4 43.8 47.6 23.9 31.4 56.6 62.1 26.9 30.6 26.8 33.9 39.3 46.7

�1

Figure 5: Active Learning vs. Passive Learning (%)

Language Identification F-score Typing
Accuracy

Overall
F-scorePER ORG LOC All

Bengali 51.0 32.7 54.3 48.5 84.1 40.7
Hausa 51.8 36.6 63.3 55.1 93.6 51.6
Tamil 40.4 16.4 46.8 39.2 86.2 33.8
Tagalog 71.6 65.2 73.9 70.1 92.8 65.1
Thai 48.5 21.8 72.8 48.6 72.0 35.0

Turkish 59.3 36.7 31.0 40.7 84.1 34.2
Yoruba 69.3 38.3 60.0 57.2 82.3 47.1

Table 5: Breakdown Scores

7 Related Work

Name Tagging is a well-studied problem. Many
types of frameworks have been used, including
rules (Nadeau and Sekine, 2007; Farmakiotou et al.,
2000), supervisedmodels usingmonolingual labeled
data (McCallum and Li, 2003; Zhou and Su, 2002;
Chieu and Ng, 2002; Rizzo and Troncy, 2012), bilin-
gual labeled data (Li et al., 2012; Kim et al., 2012;
Che et al., 2013; Wang et al., 2013) or naturally
partially annotated data such as Wikipedia (Noth-
man et al., 2013), bootstrapping (Chiticariu et al.,
2010; Wu et al., 2009; Niu et al., 2003; Agichtein
and Gravano, 2000; Becker et al., 2005), and un-
supervised learning (Mikheev et al., 1999; McCal-
lum and Li, 2003; Etzioni et al., 2005; Nadeau et al.,
2006; Nadeau and Sekine, 2007; Ji and Lin, 2009).
It’s been explored for many non-English languages
such as in Chinese (Ji and Grishman, 2005; Li et
al., 2014), Japanese (Asahara and Matsumoto, 2003;
Li et al., 2014), Arabic (Maloney and Niv, 1998),

Catalan (Carreras et al., 2003), Bulgarian (Osen-
ova and Kolkovska, 2002), Dutch (De Meulder
et al., 2002), French (Béchet et al., 2000), Ger-
man (Thielen, 1995), Italian (Cucchiarelli et al.,
1998), Greek (Karkaletsis et al., 1999), Span-
ish (Arévalo et al., 2002), Portuguese (Hana et al.,
2006), Serbo-croatian (Nenadić and Spasić, 2000),
Swedish (Dalianis and Åström, 2001) and Turk-
ish (Tür et al., 2003). However, most of previous
work relied on substantial amount of resources such
as language-specific rules, basic tools such as part-
of-speech taggers, a large amount of labeled data, or
a huge amount ofWeb ngram data, which are usually
unavailable for low-resource ILs. In contrast, in this
paper we put the name tagging task in a new emer-
gent setting where we need to process a surprise IL
within very short time using very few resources. The
results of the tested ILs are still far from perfect, but
we hope our detailed comparison and result analysis
can introduce new ideas to balance the quality and
cost of name tagging.

8 Conclusions and Future Work

Name tagging for a new IL is a very important
but also challenging task. We conducted a thor-
ough study on various ways of acquiring, encod-
ing and composing expectations from multiple non-
traditional sources. Experiments demonstrate that
this framework can be used to build a promising
name tagger for a new IL within a few hours. In
the future we will exploit broader and deeper entity
prior knowledge to improve name identification. We
will aim to make the framework more transparent for
native speakers so the survey can be done in an au-
tomatic interactive question-answering fashion. We
will also developmethods tomake the tagger capable
of active self-assessment to produce the best work-
flow within time bounds.
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