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Abstract

Recent research has shown that large-scale
pretrained language models, specifically trans-
formers, tend to exhibit issues relating to
racism, sexism, religion bias, and toxicity in
general. Unfortunately, these pretrained lan-
guage models are used almost universally in
downstream tasks, and natural language pro-
cessing is often applied to make real-world
predictions. Thus, debiasing these language
models as early in development as possible
is increasingly crucial for preventing unin-
tentional harms from natural language sys-
tems. To this end, we propose a new tech-
nique called partitioned contrastive gradient
unlearning (PCGU), a gray-box method for
debiasing pretrained masked language models.
PCGU aims to optimize only the weights that
contribute most to a specific domain of bias
using a first-order approximation based on the
gradients of contrastive sentence pairs. Our
experiments show that PCGU is a low-cost
method that seems particularly effective at pin-
pointing the sources of implicit social bias in
large pretrained transformers. Although we
train using PCGU in the gender-profession do-
main only, we find that doing so can also par-
tially mitigate bias across other domains.

1 Introduction

In the past few years, extraordinary improvements
have been made to most applications of natural lan-
guage processing due to the prevalence of large
pretrained language models, particularly Trans-
formers (Vaswani et al., 2017). These language
models achieve remarkable performance not only
because of mechanisms like attention (Bahdanau
et al., 2016), but because of rich and diverse nat-
ural language corpora scraped from literature and
the internet. However, in spite of some measures
to ensure that these natural language sentences
are high quality (Radford et al., 2019), recent
work has shown that pretraining corpora contain

many toxic/biased sentences and that neural mod-
els trained on such data readily capture and exhibit
these biases (Caliskan et al., 2017; May et al., 2019;
Gehman et al., 2020; Kurita et al., 2019).

Previous studies suggest that embeddings and
models encode harmful social biases (Bolukbasi
et al., 2016; Caliskan et al., 2017; Kaneko and Bol-
legala, 2021; Dev et al., 2019; Nangia et al., 2020;
Nadeem et al., 2020). This can be problematic,
as the lack of interpretability in modern language
models means that negative stereotypes and social
biases encoded in models may lead to unfairness
and harms in production systems. Without effec-
tive mitigation techniques, finetuned models utiliz-
ing these flawed language representations might
accidentally inherit spurious correlations not repre-
sentative of the real world or their target task.

To mitigate the representational harms explained
in Barocas et al. (2017); Blodgett et al. (2020), we
might aim for two goals of different granularities.
The first goal proposes to debias a model such that
its outputs are not biased. The second aims to
remove social bias throughout a model such that
the model minimally represents constructs that can
cause itself to be biased. Regardless of the debias-
ing goal, the north star is to eliminate harms caused
by the model, so we must be motivated by how
pretrained language models are used.

Minimizing the cost of adoption for debiased
language models is a high priority for debiasing, as
any barriers may cause people to be skeptical of the
societal benefits. To ensure that people have little
reason not to use our debiased model, we aim to
minimize representing bias while still maximizing
the representation ability of the model. In this study,
we focus on debiasing pretrained language mod-
els used directly for masked language modeling.
Crucially, we modify only their weights post-hoc
without any changes to the architecture or addi-
tional modules. In this way, we enable key stake-
holders to swap out their masked language models



(by simply loading a different set of weights) but
still use the exact same code for masked predic-
tions. Furthermore, stakeholders need not rely on
the people pretraining the model to have incorpo-
rated debiasing procedures during the pretraining
process. We restrict our study to masked language
modeling, as the use cases of language models for
other downstream tasks are disparate, and extrinsic
evaluation of bias in those tasks can be confounded
by task-specific finetuning.

We hypothesize, based on the results from
Kaneko and Bollegala (2021), that problematic
social biases propagate throughout large portions
of language models. Furthermore, based on the
Lottery Ticket Hypothesis (Frankle and Carbin,
2019), we hypothesize that most bias is encoded
by specific groups of neurons rather than individ-
ual weights throughout the model. So, we propose
a gradient-based method called partitioned con-
trastive gradient unlearning (PCGU) to locate
where in the model these problematic inferences
originate from and to systematically retrain those
parts of the model to unlearn such behavior. In our
experiments, we use PCGU to unlearn the biases
in the gender-profession domain and evaluate our
approach using prior association tests for bias. We
find that PCGU is seemingly effective both in miti-
gating bias for the gender-profession domain that it
is applied to as well as for generalizing these effects
to other unseen domains. In addition, we observe
that the procedure exhibits results quickly, requir-
ing very few iterations over the tuning dataset and
very little real time until convergence. All code
for our implementation and experiments will be
publicly released following the anonymity period.
The hyperparameter search space can be found in
Appendix A.

2 Related Work

Motivated by the idea that the words in sentences
are the root of all the information flowing through
language models, static word embeddings were
the first target for debiasing (Bolukbasi et al., 2016;
Zhao et al., 2018b; Sheng et al., 2019; Nangia et al.,
2020; Dev et al., 2019; Karve et al., 2019; Zhang
et al., 2018). These methods typically operate via
projection onto some subspace that does not en-
code the targeted bias. However, modern language
models do not use external embeddings, so it is
not immediately clear that such methods can be
applied to transformers.

Further efforts have been made to extend those
patterns for contextualized embeddings (Dev et al.,
2019; Karve et al., 2019; Ravfogel et al., 2020;
Kaneko and Bollegala, 2021). However, such stud-
ies typically do not account for interactions be-
tween different parts of the model when used in
actual sentences. Instead, they focus either on the
(static) word embedding layer or on aggregate rep-
resentations of specific words.

Methods that propose debiasing models beyond
the word level have also been proposed (Liang et al.,
2020; Cheng et al., 2021). However, these meth-
ods aim only to improve the case where another
model will further use the sentence representations
generated by the text encoder. Crucially, this does
not solve any word-level problems such as masked
language modeling. Also, methods like Cheng et al.
(2021) add on extra modules, which mean that the
cost of adoption is more than simply loading a new
weights file.

Recently, much work in this field has been fo-
cused on changing the pretraining process to pre-
vent bias from being learned. Many approaches
aim to change the training process for embeddings,
classifiers, or encoders, either through changing
the training procedure or adding bias-aware terms
to the training loss function (Zhao et al., 2018a;
Lauscher et al., 2021). Other methods propose
changing or augmenting the training data in some
way, typically by adding high-quality unbiased or
antistereotypical sentences, eliminating blatantly
biased or stereotypical sentences, or a combination
of the two by replacing texts in the training cor-
pus (Elazar and Goldberg, 2018; Guo et al., 2022).
Yet other techniques utilize counterfactual or ad-
versarial signals to dissuade models from encoding
biases (Zhao et al., 2018a; Elazar and Goldberg,
2018; Zhang et al., 2018; Zmigrod et al., 2019;
Hall Maudslay et al., 2019; Webster et al., 2020).
Recent work (Omrani et al., 2023) proposed that
the content of stereotypes map to two psychologi-
cal dimensions of warmth and competence.

Perhaps most similar to our method is actually
work done in the knowledge editing space. Such
tasks propose explicitly editing specific knowledge
in a model without affecting unrelated knowledge
(Sinitsin et al., 2020; Zhu et al., 2020). This is
quite similar to our task in that we aim to remove
specific social bias from our model without affect-
ing unrelated inference ability. Recent studies in-
clude gradient-based methods that learn separate



networks to predict efficient gradient updates for
removing or replacing models’ knowledge (Cao
et al., 2021; Mitchell et al., 2021).

3 Methods

At a high-level, PCGU is composed of three parts.
First, gradients must be computed for a contrast-
ing pair of sentences whose difference is in the
domain that the model is biased in. Next, we apply
a weight importance algorithm, based on gradients,
to compute a ranked ordering of weights that are
most important to our criterion (i.e., the weights
that seem to most encode the biases we wish to
unlearn). Finally, taking the earlier gradients and
ordered weights as input, we compute a first-order
approximation of the bias gradient and perform a
standard optimization step of our language model.

In our experiments, we apply this procedure to
debias a group of masked transformer language
models for the gender-profession domain such that
their final parameters encode less bias. Specifically,
we aim to update the models such that they are not
generally biased toward a stereotypical sentence
nor an antistereotypical sentence, since even anti-
stereotypes can be harmful (McGowan and Lind-
gren, 2006). We evaluate this using existing evalu-
ation benchmarks.

3.1 Contrastive Gradients

Formally, we can consider BERT (Devlin et al.,
2019), or any masked language model in this class,
as a probability function M parameterized by its
weights θ ∈ Rd (d is the number of parameters
of the model). M computes the probability of a
token (which should be masked due to contextual
embeddings) conditioned on its right and left con-
texts. So, given a sentence si = [w1

i , w
2
i , . . . , w

n
i ]

where wj
i = [MASK], we can compute the proba-

bility distribution of all possible tokens at index j
to investigate the model’s biases.

To calculate contrastive gradients in the gender-
profession domain, we will employ a subset of
the Winogender Schemas dataset (Rudinger et al.,
2018). This subset is composed of 240 minimal
sentence pairs, where the only difference between
sentences is the gender, either male or female1,
of the pronoun coreferent with the subject of the

1We do not claim that gender is binary. However, as the
dataset only consists of three pronouns (male, female, neutral
such as “they"), we use only the male and female versions
to simplify experiments. A natural extension beyond binary
gender words should be possible inductively.

sentence. The subject of the sentence is always a
person referred to by their occupation, so we can
interpret the probabilities assigned to the male and
female pronouns as the model’s stereotype for each
occupation. For example, we may have a pair of
sentences

s1 = “The professor could not attend the talk
because he was preparing for the keynote."
s2 = “The professor could not attend the talk
because she was preparing for the keynote."

The pronoun must be assumed by the model, as
none of the context entails a gender. For domains
other than gender-profession, an analogous dataset
with minimally different sentence pairs could be
utilized (for example, the differing words can be
“Christian" vs “Atheist" for a sentence pair in a
dataset for religionism).

For each of the sentences in the minimal pair, we
compute the probability that the model assigns to
the differing token. Using standard backpropaga-
tion, we then calculate the gradients,∇1,∇2 ∈ Rd,
of the probabilities with respect to the model’s
weights θ.

3.2 Determining Importance of Weights

Partitioning the Weights. Now, using ∇1 and
∇2, we will determine which dimensions of θ are
the ones that seem most important to the bias. To
make this method robust, we partition θ into a set
of weight vectors θ1 ∈ Rd1 , θ2 ∈ Rd2 , . . . , θm ∈
Rdm (where d1 + · · ·+ dm = d). The gradient ∇i

is partitioned into∇1
i , . . . ,∇m

i in the same way.
To determine how to partition θ, we hypothesize

that a subset of neurons of the model should encode
all the biases/preferences of the model in different
contexts. This is motivated by the Lottery Ticket
Hypothesis (Frankle and Carbin, 2019), which
posited that neural networks often contain highly
active subnetworks that can be solely trained to
solve a task. Here, we propose two related forms of
partitioning: input aggregation and output aggrega-
tion. In transformers, input aggregation partitions
attention matrices by grouping together the weights
that determine how much each element in the in-
put embedding contributes to the key/query/value
vectors. Output aggregation partitions the attention
matrices by grouping the weights that determine
how much each element in the key/query/value
vectors is influenced by the input embedding. For
non-attention weight matrices such as those used
for dense layers, the same concepts apply but for



Figure 1: This illustration shows a single dense layer. The dense layer’s weights are represented by the 3×2 matrix
W and the output −→o is computed from the input

−→
i by the multiplication −→o =

−→
i ·W. We can perform input

aggregation by splitting W along its rows to get 3 parts. Now, suppose that
−→
i 1 is the embedding representing

gender,
−→
i 2 is the embedding representing race,

−→
i 3 is the embedding representing sexual orientation, −→o 1 is the

embedding representing occupation, and −→o 2 is the embedding representing intelligence, then −→v1 represents how
much gender is taken into account when determining occupation and intelligence.

the output embedding rather than the attention vec-
tors. Note that we do not partition bias vectors for
either partitioning method.

As an example, consider an r × c weight matrix
W and a 1 × r input embedding vector

−→
i . The

left multiplication of
−→
i by W results in the 1×C

output embedding vector −→o =
−→
i ·W. Input ag-

gregation partitioning would partition W into r
vectors (−→v1 ,−→v2 , . . . ,−→vr ), where each of the vectors
−→vi determines how much the ith index of

−→
i con-

tributes to−→o (since each index j of−→o is computed
as −→o j =

∑r
i=1

−→
i i · −→vi j). Output aggregation par-

titioning would instead partition W into c vectors
(−→v1 ,−→v2 , . . . ,−→vc ), where each of the vectors −→vj de-
termines how much

−→
i contributes to the jth index

of −→o (since −→o j is the dot product of −→vj and
−→
i ).

Therefore, input aggregation partitioning is equiva-
lent to partitioning the right-multiplied matrix by
its rows, as illustrated in Figure 1. Similarly, output
aggregation partitioning is splitting by its columns.

In the 110M parameter version of BERT, using
input aggregation partitioning to partition θ gives
us approximately 114k weight vectors and using
output aggregation partitioning results in about 88k
weight vectors.

Computing Importance of Weight Blocks. Next,
we will calculate which vectors of the partition
{θ1, θ2, . . . , θm} seem to most encode the bias.
Since our minimal pairs differ only in the gen-
der of the subject noun working in the profes-
sion, the gradients will encode the direction of
maximal increase in probability for the associ-

ated gender term. We expect that some parts of
the gradient may encode concepts like grammar,
semantics, and syntax, and be similar for both
gradients. On the other hand, we expect a few
parts of the gradient to be drastically different,
as those are the parts of the model that the gen-
der of the pronoun is highly relevant to. With
{∇i

1}m1 and {∇i
2}m1 being the partitioned gradi-

ents for the two minimally different sentences, we
order the weight vectors θr1 , θr2 , . . . , θrm , where
the ordering {r1, r2, . . . , rm} is determined by how
different each of the corresponding gradient pieces
is. Since the magnitude of each gradient piece is
highly dependent on unrelated values, we use only
the directions of the vectors to determine the dif-
ference between corresponding pieces in the two
gradients. Thus, θ1, θ2, . . . , θm are ordered by im-
portance computed by cosine similarity:

Importance(θi) =
∇i

1 · ∇i
2

‖∇i
1‖‖∇i

2‖
(1)

Weight vectors where the associated contrasting
gradient pieces have low cosine similarity are thus
determined to be most important for the targeted
bias. In contrast, the ones with high similarity
are determined to be least important to that bias,
but may be more relevant to unrelated concepts or
different types of bias.

3.3 First-order Gradient Optimizer Step

Finally, we take some subset of the partition of
weight vectors and only optimize those parts of θ



to approximate reducing bias. We choose the sub-
set θr1 , θr2 , . . . , θrk as the k most important weight
vectors. To determine the actual values of the gradi-
ent used in this optimization step, we consider the
gradients of each pair of sentences in our tuning
set. In each pair, we denote one sentence to be the
“advantaged" sentence and the other to be the “dis-
advantaged" sentence. The advantaged sentence is
the one that is expected to be more preferred by a
biased model and the disadvantaged sentence to be
the one less preferred. In our experiments tuning
with Winogender, we use the included statistics
about the proportion of gender-occupation corefer-
ence pairs in news sentences where the gender is
female (Bergsma and Lin, 2006). From these pro-
portions, we choose the sentence with the pronoun
that is less often coreferent to be the disadvantaged
sentence and the other to be the advantaged sen-
tence.

We then relabel the sentence pair s1, s2 to be
sa1 , sa2 where a1 is the index of the advantaged
sentence and a2 is the index of the disadvantaged
sentence. For example, since the reported propor-
tion of the male-surgeon pair is 0.9566, a1 = 1 is
the index of the advantaged sentence and a2 = 2 is
the disadvantaged sentence.

Finally, to compose our bias gradient, we will
take the gradient parts associated with the advan-
taged sentence (i.e., ∇r1

a1 ,∇
r2
a1 , . . . ,∇

rk
a1) and ap-

ply a negative optimization step. In this negative
optimization step, we perform gradient descent,
moving the parameters in the direction of maximal
probability decrease of the advantaged term:

θri ← θri − α1{i ≤ k}∇ri
a1 , (2)

where α is the learning rate.
It is also reasonable to move the parameters in

the direction of maximal probability increase of
the disadvantaged term, which we discuss more in
Section 4.5. Similarly, we may decide that using
historic counts is too rigid and non-representative
of modern models. Instead of using the coreferent
pairs proportions, we can decide which word is
advantaged and which is disadvantaged based on
their logits at inference time. We discuss this more
in Section 4.6.

4 Experiments and Discussion

4.1 Datasets
We evaluate our proposed PCGU method on two
recent social bias benchmarks: StereoSet (Nadeem

Model SS LMS ICAT CrowS
bert-base-cased 0.569 0.873 0.752 0.551
+ PCGU (ours) 0.534 0.837 0.781 0.548
+ DPCE 0.624 0.785 0.590 0.458
+ AutoDebias 0.530 0.507 0.476 0.465
+ PCGU then DPCE 0.581 0.849 0.712 0.452
+ DPCE then PCGU 0.569 0.726 0.625 0.486
roberta-base 0.625 0.917 0.689 0.593
+ PCGU (ours) 0.570 0.839 0.722 0.584
+ DPCE 0.641 0.930 0.667 0.405
+ AutoDebias 0.596 0.685 0.554 0.467
+ PCGU then DPCE 0.561 0.860 0.755 0.311
+ DPCE then PCGU 0.588 0.853 0.703 0.516

Table 1: PCGU compared with DPCE (Kaneko and
Bollegala, 2021) and AutoDebias (Guo et al., 2022),
two recent debiasing methods. Bolded values are the
best in their class.

et al., 2020) and CrowS Pairs (Nangia et al., 2020).
Since PCGU is intended for masked language mod-
eling within a sentence, we use only the intrasen-
tence subset of StereoSet. Each instance in Stere-
oSet is a sentence triplet: one sentence is stereotyp-
ical, the second is antistereotypical, and the final
sentence is a semantically non-sensical sentence.

Girls tend to be more soft than boys. (stereo)
Girls tend to be more determined than boys. (anti)
Girls tend to be more fish than boys. (nonsense)

Each instance in CrowS Pairs is a minimally differ-
ent pair of stereotypical and antistereotypical sen-
tences. Using these two datasets, masked language
models can be evaluated for bias by comparing the
probabilities associated with each sentence.

4.2 Evaluation Metrics

The three StereoSet metrics are the Stereotype
Score (SS), the Language Modeling Score (LMS),
and the Idealized Context Association Test
score (ICAT). These metrics are computed by com-
paring the probability assigned to the contrasting
portion of each sentence conditioned on the shared
portion of the sentence. The CrowS metric is simi-
lar to SS except that it computes the probability of
the shared portion of the sentence conditioned on
the contrasting portions of each sentence instead.

SS and CrowS both measure the proportion of ex-
amples where the stereotypical sentence is assigned
a higher probability than the antistereotypical sen-
tence. The ideal score is 0.5, indicating no general
bias toward either the stereotype or antistereotype.

To measure the language modeling abilities of
the model, LMS is proposed as the proportion of



Model Name k Partition method SS LMS ICAT CrowS

BERT (base, uncased)

0 (pretrained) - 0.5138 0.7724 0.7510 0.6048
14000 Input 0.4959 0.7675 0.7612 0.5968
11000 Output 0.5122 0.7626 0.7440 0.6021

All - 0.4846 0.6512 0.6311 0.6021

BERT (base, cased)

0 (pretrained) - 0.5693 0.8729 0.7519 0.5511
3000 Input 0.5336 0.8372 0.7809 0.5477
9500 Output 0.5609 0.8571 0.7527 0.5424
All - 0.5126 0.5956 0.5806 0.5444

RoBERTa (base)

0 (pretrained) - 0.6246 0.9170 0.6885 0.5928
22000 Input 0.5698 0.8389 0.7218 0.5842
8000 Output 0.6130 0.8953 0.6931 0.6114
All - 0.5415 0.6827 0.6260 0.5358

ALBERT (base)

0 (pretrained) - 0.5000 0.5669 0.5669 0.5676
1000 Input 0.4806 0.5371 0.5163 0.4483
1300 Output 0.4790 0.4315 0.4134 0.4894
All - 0.4839 0.4452 0.4308 0.6068

Table 2: Models are chosen at the epoch at which they achieve an average (across the gender and profession
domains) SS closest to 0.5 on our development set. The reported SS, LMS, and ICAT scores are based on our full
test set (across all domains). Our development and test sets are created as a random 50/50 split of the intrasentence
portion of the original development set of StereoSet. k = 0 models are the original pretrained model and k = All
models are models tuned using the full gradient without partitioning (i.e., tuning all weights).

examples where the stereotypical/antistereotypical
sentences are assigned a higher probability than the
non-sensical one. So, an ideal model achieves a
score of 1, and debiasing methods should aim to
minimally decrease this score during debiasing.

In order to measure the tradeoff between better
SS and worse LMS after debiasing, ICAT combines
the two into a score between 0 and 1 such that a
perfectly debiased and accurate model achieves a
score of 1 (also, a fully random model achieves a
score of 0.5).

Full formulations of these metrics can be found
in Appendix D.

4.3 Experiments

We test PCGU on four masked language models:
the uncased and cased versions of 110M BERT (De-
vlin et al., 2019), the 125M version of RoBERTa
(Liu et al., 2019), and the 11M version of ALBERT
(Lan et al., 2020), all pretrained from the Hugging-
Face library (Wolf et al., 2020). For each of the
models, we report the results of the best-performing
model tuned via PCGU using each of the two (in-
put and output) aggregation partitioning methods.
Input aggregation models were tuned for at most
15 epochs using a learning rate of α = 2e− 6 and
output aggregation models were tuned for at most
10 epochs using a learning rate of α = 1e− 5. On
a single NVIDIA Tesla V100 GPU (16GB), using
a batch size of 64 pairs from Winogender (so there

are 4 batches per epoch), PCGU tuning of BERT
with PyTorch takes around 4 seconds per batch us-
ing input aggregation partitioning and 50 seconds
per batch for output aggregation partitioning 2.

Notably, we re-compute weight importance for
each batch of b sentence pairs by computing the
importance using the batched gradients. This is
as opposed to computing the importance for each
example pair (i.e., b = 1) or using a static selection
of weights computed based on the full dataset. In
our testing, we found little discernible difference in
using different batch sizes, provided that they were
reasonably large (b > 16). Evidently, larger batch
sizes allowed the weight importance computation
to be more robust.

We report the results of these experiments in
Table 2. Although the reported PCGU models do
not achieve the perfect SS of 0.5, we tend to see
significant improvement to the SS compared to
relatively little decrease in LMS, leading to an in-
crease in the overall ICAT score for both BERT
and RoBERTa. However, this was not the case for
ALBERT (whose pretrained version achieved a per-
fect SS), which might suggest that this method is
more effective when knowledge is more distributed
(i.e., for larger models) or that our stopping criteria
are imprecise. Perhaps unsurprisingly, the CrowS

2The extra runtime of output aggregation is due only to the
specific implementation we used, which indexed into tensors
using the range() function to allow for a more generic interface
rather than slicing. Slicing indices is much more efficient.



score does not seem to be affected by PCGU (al-
though it does seem to have slightly improved in all
cases). We attribute this observation to the fact that
the gradient used for PCGU more closely resem-
bles the probability used for the StereoSet metrics.

Based on our random development/test split of
StereoSet, we find that apparently the dataset is
not uniform. Therefore, the performance for either
SS or LMS of a model on the development set
was not a great indicator of its performance on the
test set. The average SS of each of the reported
PCGU models on the development set is within
0.016 of perfect, and mostly within 0.001 of perfect.
However, not only do we find that many different
models achieve perfect or near-perfect SS on the
test set (but not on the development set as well),
but there exist yet other models that achieve high
SS across the entire set but poor SS over each of
the development and test sets.

We also compare models debiased using PCGU
with those debiased by DPCE (Kaneko and Bol-
legala, 2021) and AutoDebias (Guo et al., 2022),
two recent methods that also aim to update all the
weights of the language model without changes in
architecture, in Table 1. We find that DPCE tends
to be far less effective than PCGU whereas Au-
toDebias produces a close-to-random model. Also,
PCGU can significantly debias a model even after
DPCE, but the opposite is less notable. Thus, as a
standalone method, PCGU seems superior to the
others. However, since they seem to have differ-
ent effects (DPCE actually causes LMS to improve
in some cases), it may be most effective to chain
multiple methods together.

As part of a qualitative analysis, we find that
most random examples from StereoSet and even
our own examples follow the trends shown in Fig-
ure 2. This suggests that PCGU debiases by aiming
for equality of genders in the sense used in Beutel
et al. (2017); Zhang et al. (2018), where the odds
of either gender are mostly uncorrelated with the
context.

4.4 Weight Importance Ablations

As an ablation test for the weight importance step,
we also perform PCGU using all the weights (ba-
sically, taking a backward optimizer step for the
advantaged sentence). We find that, although the
procedure generally is able to debias the language
model well, the language modeling functionality is
greatly crippled (similar to AutoDebias). This is in

stark contrast to the weight partitioning versions,
which incur a much smaller decrease in language
modeling ability. These results suggests that some
form of partitioning is clearly necessary; not all
weights of the model contribute equally to bias.

We also find that the choice of input vs output
aggregation partitioning does not obviously affect
the performance of the debiased models. How-
ever, across the experiments, the input partitioning
method maintained a slight edge over the output
partitioning method.

4.5 Decreasing the Advantaged Probability
vs Increasing the Disadvantaged
Probability

We also investigate the difference between taking
the optimization step in PCGU to decrease the prob-
ability of the advantaged sentence compared to
increasing the probability of the disadvantaged sen-
tence. We find that the former results in faster con-
vergence, although the latter does not take much
longer to converge to similar performance. In gen-
eral, the difference in performance depended more
on the model selection criteria than on which gradi-
ent was used for the tuning. For example, selecting
the model based on the SS over the gender and pro-
fession domains rather than based on the average
SS (compute SS for each domain and then average
it) resulted in as much fluctuation in SS on the test
set as using the disadvantaged gradient instead of
the advantaged gradient did.

There are some interesting implications related
to the difference in goals of using each gradient. By
decreasing the probability of the advantaged sen-
tence, we are more directly teaching the model to
be less biased. On the other hand, by increasing the
probability of the disadvantaged sentence, we are
instead teaching the model to be equally as biased
toward both forms (compared to other options). In
reality, bias comes in many shapes, and our work
is motivated by the idea that we want to unlearn
the entire class of bias, not just specific examples.
Unfortunately, a pair of options is not enough to
represent the full distribution of options. Therefore,
it seems reasonable to believe that decreasing the
probability of the advantaged sentence should be
more applicable for general forms of bias. Thus,
our experiments report this result.



Figure 2: BERT, pretrained vs debiased with PCGU.

Model Name SS LMS
BERT (base, uncased) 0.5106 0.7659

BERT (base, cased) 0.5777 0.8687
RoBERTa (base) 0.6213 0.9128
ALBERT (base) 0.5048 0.5613

Table 3: PCGU with dynamic sentence classification.

4.6 Dynamically Determining the
Advantaged and Disadvantaged Sentence

We also consider the differences between using a
static determination of which sentence is advan-
taged and a dynamic determination, as alluded to
in Section 3.3. A pretrained model’s state is highly
complex so the model may need to improve greatly
for one region of the bias space and less so for an-
other region. Therefore, it seems likely that one
space may become debiased before another space
has been debiased. By using a static determina-
tion, we resign ourselves to the likelihood that an
already debiased space may become biased in the
opposite direction while we debias the other space.
In other words, it seems likely that the model may
overshoot and fail to achieve an ideal overall per-
formance when using the static determination.

This is, in experimentation, not the case, and
we report the results of PCGU using a dynamic
determination in Table 3. At each training step, we
dynamically choose the advantaged and disadvan-
taged sentences based on the logits of the masked
token. Since this now allows us to simply aim for
equality in the sentences, we then perform the op-
timization step using the difference in gradients
(such that the advantaged sentence probability is
decreased and the disadvantaged sentence proba-

bility is increased). In all cases, the model’s perfor-
mance both for SS and LMS remained similar to
the original pretrained model. Thus, we can con-
clude that this dynamic determination is not usable
for debiasing.

4.7 Cross-Domain Effects of PCGU

Model Name Race Religion
BERT (base, uncased) 0.3799 - 0.4773 0.3636 - 0.5455
BERT (base, cased) 0.4372 - 0.5368 0.3750 - 0.7500

RoBERTa (base) 0.4146 - 0.6516 0.3500 - 0.7500
ALBERT (base) 0.3571 - 0.6071 0.1429 - 0.6667

Table 4: SS ranges for out-of-domain biases after
PCGU. Observe that the perfect SS of 0.5 is contained
in most of these ranges.

The scores for our experiments suggest that
PCGU is effective at changing the amount of bias in
a model without greatly affecting the transformer’s
ability to perform language modeling. Interestingly,
despite the fact that our tuning set for PCGU only
contained information related to gender and profes-
sion, we see that this procedure is able to change
the amount of bias in other domains as well (to
varying degrees), as shown in Table 4.

This suggests that perhaps some of the parame-
ters/neurons governing different domains of bias
are overlapping. However, it is just as possible
that the difference in SS may be due only to noise
or factors unrelated to bias. An extension of this
experiment may be able to determine if different
domains of bias can be concurrently or sequentially
debiased. It also seems reasonable, using the anal-
ogous data for other domains of bias mentioned
in Section 3.1, to determine which weights are im-
portant for separate domains of bias and which are
shared.

5 Conclusion

In this paper, we introduced PCGU, a method to
systematically search through a pretrained masked
language model to find the origins of its bias and
mitigate them. The positive results in our paper sug-
gest that, with the proper data, post-hoc removal
of problematic social biases can be efficient and
targeted via PCGU. Our findings also support the
notion that different types of bias arise from differ-
ent areas in pretrained transformers.

We believe that by focusing on the language
model holistically, rather than as a collection of
individual pieces, we can more effectively remove



representational harms from pretrained language
models. It is our hope that future studies are able
to leverage PCGU to fully debias language models
and increase adoption of fair pretrained models.

Future efforts can also aim to address any limita-
tions of our paper noted in Appendix E.

6 Other Ethical Considerations

This study employed a binary classification of gen-
der in our experimentation and description of the
methodology. It is our firm stance that such beliefs
have no place in the community, especially consid-
ering that language evolves with its users. However,
we believe that this narrow view of gender is neces-
sary as a step in the broader direction of full equity.
We hope that when high quality datasets displaying
non-binary genders are released, researchers may
revisit this paper and study an inductive extension
of PCGU.

We also recognize the fact that any method used
for debiasing may possibly be reversed to train ex-
tremely bigoted models. However, we believe that
any such practice for PCGU would not be better
than existing training methods. As observed in
our experiments, even when looking to increase
the probability of logits only (as opposed to ex-
plicitly decreasing the advantaged sentence), the
language modeling score still suffers. Therefore,
there seems to be no reason that this could allow
for more biased models than simply finetuning on
many bigoted examples.

Due to the problems with StereoSet and CrowS
alluded to in Appendix E, we recognize that ex-
perimental results based on those metrics are not
conclusive evidence that a model is biased or un-
biased (or good at modeling). We urge any reader
to make their own judgment about these models
through their own qualitative analyses.
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A Hyperparameter Search

For the models reported in Table 2, the only hyper-
parameter search performed was for the value of
k. In general, fewer attempts were made for output
aggregation methods, as those took much longer
to perform. Also, output aggregation and input
aggregation resulted in different maximum values
of k. The range of k experimented on was based
on being near to 10% of available vectors. All k
values were chosen uniformly over the provided
range (both bounds inclusive) based on the step
size.

Summary statistics are not included as each k is
essentially a different value.

1. bert (both bert-base-uncased and bert-base-
cased). For input aggregation, k from 2000
to 22000 with a step size of 1000. For output
aggregation, k from 5000 to 11000 with a step
size of 1500.

2. roberta-base. For input aggregation, k from
2000 to 26000 with a step size of 1000. For
output aggregation, k from 5000 to 11000
with a step size of 1500.

3. albert-base-v2. For input aggregation, k from
1000 to 8000 with a step size of 250. For
output aggregation, k from 500 to 1500 with
a step size of 200.

B Dataset Download Links

CrowS Pairs: https://github.com/nyu-mll/crows-
pairs
StereoSet: https://stereoset.mit.edu/

C Dataset Statistics

The full CrowS dataset of 1508 examples is used
for evaluation.

Instances from StereoSet where any of the
masked words tokenized to more than one to-
ken were discarded, since the masked language
models we use do not support joint mask predic-
tion/infilling. In the remaining set, there were 765
instances in the gender domain, 2430 in the profes-
sion domain, 2886 in the race domain, and 237 in
the religion domain.

D Evaluation Metrics

Given a sentence si = [w1
i , w

2
i , . . . , w

n
i ] where

wj
i = [MASK], we can compute the probability

distribution of the tokens in the masked index by
taking

M(·|left = [w1
i , . . . , w

j−1
i ],

right = [wj+1
i , . . . , wn

i ], θ). (3)

So, we can compute the probability that the model
prefers a specific word in the context of sen-
tence si, where si is understood to have a sin-
gle [MASK] token at position j, by the notation
M(si) = M(wj

i |left = [w1
i , . . . , w

j−1
i ], right =

[wj+1
i , . . . , wn

i ], θ).
Sentence st is stereotypical, sa is antistereotyp-

ical, and the final sentence sn is the non-sensical
sentence. As a reminder, for StereoSet we have all
three sentences and for CrowS we have only the
sensical two sentences.
Stereoset. There are three evaluation met-
rics proposed in the StereoSet dataset: the
Stereotype Score (SS), the Language Modeling
Score (LMS), and the Idealized Context Associ-
ation Test score (ICAT).

The SS of a model M is the proportion of the
sentence pairs in which the model tends to prefer
the stereotypical sentence over the antistereotypical
sentence. For an evaluation set E ,

ss(M) = E(st,sa,sn)∈E1[M(st) > M(sa)] (4)

An ideal model without bias is claimed to have
an SS score of 0.5 meaning that it does not prefer
either a stereotype or an antistereotype in general.

The LMS score measures the basic language
modeling capability of a model and is intended to
mimic a regression test. It is calculated as how
often the model M prefers an acceptable sentence
over a meaningless one.

lms(M) =
1

2
E(st,sa,sn)∈E1[M(st) > M(sn)]

+
1

2
E(st,sa,sn)∈E1[M(sa) > M(sn)],

(5)
where we consider both stereotypical and antis-
tereotypical sentences to be informative. A perfect
language model should have a score of 1 and a de-
biased language model should have a score similar
to the original language model.

ICAT combines SS and LMS as

icat(M) = lms(M)∗min{ss(M), 1− ss(M)}
0.5

.

(6)

https://github.com/nyu-mll/crows-pairs
https://github.com/nyu-mll/crows-pairs
https://stereoset.mit.edu/


A perfect model achieves an ICAT of 1, a fully
biased model achieves an ICAT of 0, and a random
model achieves an ICAT of 0.5.

CrowS Pairs. The CrowS score is also based
on the masked language modeling probabilities but
computed to condition on the prior probabilities
of words. Given a pair of stereotypical and anti-
stereotypical sentences (st, sa), we first split the
tokens of each of them into constrastive tokens
Ct, Ca (soft vs determined in the example from
Section 4.1) and overlapping tokens O. We then
compute the probability of each sentence via a sum-
mation of masked language modeling log probabil-
ities of all overlapping tokens conditioned on the
non-overlapping tokens:

Q(M, C) =
∑
j∈O

logP (j|C,O\{j}) (7)

Finally, the CrowS metric measures the proportion
of CrowS pairs where the model assigned a higher
probability to the stereotypical sentence compared
to the antistereotypical one:

crows(M) = E(st,sa)∈E1
[
Q(M, Ct) > Q(M, Ca)

]
(8)

E Limitations

We acknowledge that the StereoSet and CrowS
datasets and metrics are not ideal evaluation mea-
sures for debiasing work (see Blodgett et al. (2021)
for more details about their pitfalls). Furthermore,
we realize that in discussion of harms, we should
also ensure that allocative harms do not arise from
dependency on a PCGU-debiased model. In this
paper, we do not report experiments on models
finetuned for other downstream tasks, as finetuning
is generally more prone to spurious correlations
and accidentally encoding bias, so evaluating such
models obfuscates the procedure’s effect on the
pretrained model. Instead, we focused only on the
masked language modeling task such that intrinsic
and extrinsic evaluations both use the pretrained
model directly and only.

Unfortunately, a fundamental problem with in-
terpretability arises if we wish to evaluate the lan-
guage model’s bias implicitly. For example, the
prediction in Figure 2 suggests that the debiased
model is less biased than a model predicting the
full probability mass for the female term. Discrete
metrics fail to account for this behavior, so better
evaluation metrics would also give us a better sense
of the efficacy of our proposed method.

We also realize that gender, which has histori-
cally been treated as a binary construct, is likely
to be a relatively easy domain to work with. Other
more complicated social biases like racism and
classism are similarly harmful, and an ideal debi-
asing procedure should work for all of them. It is
not obvious if a properly modeled dataset for such
other domains of bias can be constructed. Similar
questions may arise about if we can ever compre-
hensively cover all domains without a better way
to generalize across domains. It is also to be seen
if PCGU can be directly used for other domains, as
our experiments only touched on the intersection
of gender and profession biases.

Obviously, partitioning at the most granular
level where each single parameter is its own part
would make our directional comparison meaning-
less. However, we did not extensively study how
important the specific partitioning method was. An
interesting class of experiments would be using
some sort of random partitioning, where each in-
dividual parameter is assigned to its group of pa-
rameters not according to any architectural reason
but according to some sort of randomness. Our
implementation of this made the gradient selec-
tion extremely expensive because it required too
much indexing into tensors as opposed to a full
replacement of specific dimensions. A better im-
plementation or experiment would be needed to
draw actionable conclusions about different parti-
tioning methods.


