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ABSTRACT

Extracting information from natural language text is one of the most challenging and long-
standing problems in the field of Natural Language Processing (NLP). Information Extrac-
tion (IE) turns the unstructured data into a structured knowledge base, according to a
predefined schema or ontology. One of the core tasks in Information Extraction is name
tagging, which seeks to identify and classify names in text into predefined categories such as
persons, locations and organizations. It is also known as Named Entity Recognition (NER).
Name tagging produces informative results that are beneficial for many downstream NLP
tasks, such as relation extraction and event extraction, and it also plays an important role
in industrial applications, such as Question Answering and Dialogue System.

State-of-the-art name tagging approaches rely on supervised machine learning mod-
els that require a massive amount of clean annotated data. These supervised methods are
sophisticated and very effective for high-resource languages (HL) such as English, German,
and French. However, in scenarios where annotations are insufficient and noisy, the perfor-
mance of these approaches declines greatly. Meanwhile, the acquisition of human annotated
data is expensive and time-consuming, which makes traditional supervised machine learning
approaches very difficult to deploy, especially in an emergent setting.

In this thesis, we focus on tackling the challenges of name tagging for low-resource
languages (LL) in emergent situations. The methodology presented in this thesis con-
sists of three parts. In the first part, we populate name tagging annotations by generating
“silver-standard” noisy training data via 1) “Chinese Room” where we designed a “Chinese
Room” [1] platform to ask a native English speaker to extract names from some low-resource
language documents, 2) Parallel Name Projection where we project extracted English names
to LL sentences through English-LL parallel data, and (3) Wikipedia Knowledge Base (KB)
mining where we transfer annotations from English to other languages through cross-lingual
links and KB properties in Wikipedia.

In the second part, as the traditional supervised machine learning models suffer from
a huge performance decrease when trained on the noisy “silver-standard” annotations, we
propose a new solution to incorporate many non-traditional language universal resources that
are readily available but rarely explored in the NLP community. These universal resources

xii



contain valuable dictionaries, grammars, language patterns, etc, all of which are presented
in multiple languages. We encode various types of non-traditional linguistic resources as
features into a supervised Deep Neural Network (DNN) name tagger.

In the third part, as only relying on local contextual information, the current DNN
models may perform poorly when the local context is ambiguous or limited. We propose a
new framework to improve the DNN name tagger by utilizing local and global (document-
level and corpus-level) contextual information. We retrieve the document-level context from
other sentences within the same document and corpus-level context from sentences in other
documents. The proposed model learns to incorporate document-level and corpus-level con-
textual information alongside local contextual information via global attention, which dy-
namically weights their respective contextual information, and gating mechanisms, which
determine the influence of this information.

At last, we investigate training LL name taggers without using any LL annotation.
We transfer a name tagger that trained on HL annotations to a LL name tagger via two
unsupervised approaches: 1) cross-lingual word embedding where we align monolingual word
embedding of HL and LL into a shared space, and 2) cross-lingual language model where
instead of aligning word embedding, we project the contextualized word embedding (language
model) of HL and LL into a shared space.
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Chapter 1
Introduction

1.1 Information Extraction and Name Tagging
Information Extraction (IE) turns the unstructured information embedded in texts

into structured data [2], according to a predefined schema or ontology. The transformed
structured information are sets of machine-readable facts that can be further populated
into a knowledge base. Rich structured information distilled from enormous unstructured
data largely expands knowledge bases [3, 4] and significantly improves downstream Nat-
ural Language Processing (NLP) tasks, such as question answering [5, 6, 7] and machine
translation [8].

Name Tagging - The initial step in most IE tasks is to identify and classify mentions
of named entities in a text into certain entity types. The entity types are predefined and
task-specific: person, location, and organization are common types in news domain, but
entity types such as protein and gene are common in bio-medical domain, and currency is a
common entity type in finance domain.

Relation Extraction - Once names are extracted from texts, we can apply relation
extraction to discover and classify the relations among the entities.

Event Extraction - Event extraction extracts the specific knowledge of certain incidents
in which these entities participate.

Besides these three tasks, IE also includes coreference resolution, entity linking, slot
filling, etc. In this thesis, we mainly focus on the task of name tagging.

Name Tagging is a process where an algorithm takes a string of text (sentence or
paragraph) as input and identifies relevant proper nouns that are mentioned in the string.
Conceptually it can be broke down as two distinct phases: named entity detection and entity
type classification. The first phase is commonly simplified as a segmentation or chunking
problem where names are defined as continuous spans of words, which means a name is a
single word or phrase. In most cases, nested names are disallowed, for instance, “Illinois
State Senate” is an organization name as a whole, regardless of the fact that its substring
“Illinois” is itself a name. The second phase, entity type classification, assigns each identified
name span a predefined type.

1
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Type Tag Sample Categories Example Sentences
Person PER people, social media

usernames
[PER Barack Obama] was born on August
4, 1961.

Location LOC rivers, mountains,
oceans, roads

The [LOC Grand Canyon] is a steep-sided
canyon carved by the [Colorado River LOC].

Geo-political
Entity

GPE countries, cities, states,
provinces

[GPE New York City] is the most popu-
lous city in the [GPE United States].

Organization ORG companies, military
bases, sports teams

[ORG Apple] is the first US company worth
$1 trillion.

Facility FAC airports, bridges, build-
ings

The [FAC Golden Gate Bridge] is a sus-
pension bridge.

Vehicles VEH airplanes, ships, trains The disappearance of [VEH MH370] has
been dubbed one of the greatest aviation
mysteries of all time.

Weapons WEA tanks, missiles The [WEA Patriot] is a ground-based, mo-
bile missile defense interceptor.

Table 1.1: A list of generic entity types.

Table 1.1 lists typical generic named entity types. Name tagging is also known as
Named Entity Recognition (NER) in some literature.

[PER Barack Hussein Obama II] (born August 4, 1961) is an 
[GPE American] attorney and politician who served as the 
44th President of the [GPE United States] from January 20, 
2009, to January 20, 2017. A member of the [ORG Democratic 

Party], he was the first African American to serve as 
president. [PER Barack Obama] was previously a [GPE United 

States] Senator from [GPE Illinois] and a member of the [ORG
Illinois State Senate].

Figure 1.1: An example of name tagging on English sentences.

Figure 1.1 shows a name tagging example. The text contains 8 mentions of named
entities, including two Persons (PER), four Geo-Political Entities (GPE), and two Organi-
zations (ORG). Ambiguous cases are underlined, as a word/phase is tagged as a name only
when it refers to a specific and unique entity, while in this example, “President” is only a
title and “African American” refers to a group of people.

Name tagging has many applications. In Question Answering (QA), incorporating
name tagging improves the speed and accuracy of getting correct answers [9, 6, 10]. In
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Machine Translation (MT), the extraction of named entities beforehand largely improves
translation results [8].

1.2 Low-resource Languages
There are about 11,000 human languages in the world, depending on different catego-

rization criteria. The most spoken language is English in terms of regions, and if in terms of
population, Chinese is the language that has the largest number of native speakers. Other
widespreadly used languages include European languages, such as French, Portuguese, and
Spanish, and United Nation (UN) languages, such as Arabic and Russian. These languages
are considered as high-resource languages (HL) as they have an enormous number of mono-
lingual text from either literature or internet, as well as a large amount of publicly available
human annotations that created for various NLP tasks, e.g. name tagging and machine
translation. In contrast, most of the 11,000 languages can be considered as low-resource
languages (LL). Formal definition of low-resource language is difficult to pin down, but most
of LL come with the following characteristics [11]: low resource/low density which refers
to languages “for which few online resources exist” [12] or “for which few computational
data resources exist” [13], critical condition which has typically referred to languages that
suffer an undesirable ratio of supply to demand, and endangered condition which refers to
languages that are at risk of losing their native speakers through a combination of death and
shift to other languages.

Studying low-resource languages can make huge impacts on real world missions or
applications. To cope with humanitarian challenges such as disease outbreaks and natural
calamities, government rescue resources are usually deployed, typically in regions of the world
where one or more low-resource languages are frequently used in formal or informal media.
In such situations, information tools, such as information extraction and machine translation
for low-resource languages are necessary and in great demand.

In the internet era, the world is “online”. People from different regions communicate
with each other on different languages. For social good reasons, studying low-resource lan-
guages can largely reduce the barriers between users that speaking different languages and
make the communication more efficient. The potential business value involved cannot be
neglected as well.
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1.3 Hypothesis and Solutions
In this section, we present four hypotheses to address the challenges and overcome

the limitations discussed above. The approaches proposed in this thesis are originated from
these hypotheses as well.

Hypothesis 1. Noisy low-resource language annotations, that created by
human efforts from non-native speakers, or distilled automatically from exist-
ing resources, can provide supervisions to machine learning models.

In the preliminary step of our proposed approach, we automatically generate noisy
labeled data by the following three methods:

“Chinese Room” - When we are in a foreign country, even if we don’t know the language,
we would still be able to guess the word “gate” from the airport broadcast based on its
frequency and position in a sentence, and guess the word “station” by pattern mining of
many subway station labels. We design a “Chinese Room” [1] platform by asking a human
user who are not native low-resource language (LL) speaker to annotate names in LL text.

Cross-lingual Name Projection through Parallel Data - When IL-English parallel data
is available, we apply a state-of-the-art English name tagger to the English documents to
obtain a list of expected names. Then we translate the English patterns and expected names
to IL. When there is no human constructed English-to-IL lexicon available, we derive a word-
for-word translation table from a small parallel data set using the GIZA++ word alignment
tool [14]. We also convert IL text to Latin characters based on Unicode mapping,1 and then
apply Soundex code [15, 16] to find the IL name equivalent that shares the most similar
pronunciation as each English name. For example, the Bengali name “টিন ে য়ার” and “Tony
Blair” have the same Soundex code “T500 B460”.

Wikipedia Knowledge Base (KB) Mining - Wikipedia is an enormously multilingual
resource that currently houses 301 languages. It contains naturally annotated markups
and rich information structures through crowd-sourcing for 35 million articles in 3 billion
words. Name mentions in Wikipedia are often labeled as anchor links to their corresponding
referent pages. We leverage these anchor links for developing a language universal framework
to automatically extract name mentions from Wikipedia articles [17].

Hypothesis 2. Language universal features can alleviate the impact of
noise in annotations, and provide robustness and generalization to a weakly

1http://www.ssec.wisc.edu/ tomw/java/unicode.html
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supervised machine learning model.
The automatically acquired annotations through aforementioned approaches contain

various kinds of noise, such as missing error where a name is not labeled, spurious error where
a labeled phrase should not be a name, offset error where only part of a name is labeled.
Various types of noise hurt the traditional supervised model by a decrease of 20%-30% on
performance based on our experiments.

In order to improve the robustness of name tagging to noise, we propose to ex-
ploit a wide variety of multi-lingual resources, such as World Atlas of Linguistic Struc-
ture (WALS) [18], Central Intelligence Agency (CIA) Names, grammar books, and survival
guides. Such resources have been largely ignored by the mainstream statistical NLP research,
because they were not specifically designed for NLP purpose at the first place and they are
often far from complete. Thus they are not immediately actionable - converted into features,
rules or patterns for a target NLP application. We design various methods to convert them
into machine readable features for a new DNN architecture.

Hypothesis 3. Recognizing names not only relies on the context of the
sentence, but also the context of the article, sometimes even the whole corpus.

When labeling a token, local context (i.e., surrounding tokens) is crucial because the
context gives insight to the semantic meaning of the token. However, there are many in-
stances in which the local context is ambiguous or lacks sufficient content, especially when
the target LL lacks of linguistic resources and tools. Figure 1.2 shows an example in English.
The query sentence discusses “Zywiec” selling a product and profiting from these sales, but
the local contextual information is ambiguous as more than one entity type could be involved
in a sale. As a result, the baseline model mistakenly tags “Zywiec” as a person (PER) in-
stead of the correct tag, which is organization (ORG). If the model has access to supporting
evidence that provides additional, clearer contextual information, then the model may use
this information to correct the mistake given the ambiguous local context.

Additional context may be found from other sentences in the same document as the
query sentence (document-level). In Figure 1.2, the sentences in the document-level sup-
porting evidence provide clearer clues to tag “Zywiec” as ORG, such as the references to
“Zywiec” as a “firm”.

In cases where the sentences at the document-level cannot serve as a source of additional
context, one may find additional context from sentences in other documents in the corpus
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Baseline:
So far this year [PER Zywiec], whose full name
is Zaklady Piwowarskie w Zywcu SA, has netted six
million zlotys on sales of 224 million zlotys.

So far this year [ORG Zywiec], whose full name
is Zaklady Piwowarskie w Zywcu SA, has netted six
million zlotys on sales of 224 million zlotys. 

Our model (Documentlevel + Corpuslevel Attention):

Van Boxmeer also said [ORG Zywiec] would be boosted
by its recent shedding of soft drinks which only
accounted for about three percent of the firm's
overall sales and for which 7.6 million zlotys in
provisions had already been made.

Polish brewer [ORG Zywiec]'s 1996 profit slump may
last into next year due in part to hefty
depreciation charges, but recent high investment
should help the firm defend its 10percent market
share, the firm's chief executive said. 

Documentlevel Supporting Evidence:

The [ORG Zywiec] logo includes all of the most
important historical symbols of the brewery and
Poland itself. 

[LOC Zywiec] is a town in southcentral
Poland 32,242 inhabitants (as of November 2007).

Corpuslevel Supporting Evidence:

Figure 1.2: Example from the baseline and our model with some supporting
evidence.

(corpus-level). Figure 1.2 shows some of the corpus-level supporting evidence for “Zywiec”.
In this example, similar to the document-level supporting evidence, the first sentence in
this corpus-level evidence discusses the branding of “Zywiec”, corroborating the ORG tag.
Whereas the second sentence introduces noise because it has a different topic than the current
sentence and discusses the Polish town named “Zywiec”, one may filter these noisy contexts,
especially when the noisy contexts are accompanied by clear contexts like the first sentence.

We propose to utilize local, document-level, and corpus-level contextual information
to improve name tagging. Generally, we follow the one sense per discourse hypothesis
introduced by [19]. Some previous name tagging efforts apply this hypothesis to conduct
majority voting for multiple mentions with the same name string in a discourse through a
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cache model [20] or post-processing [21]. However, these rule-based methods require manual
tuning of thresholds. Moreover, it’s challenging to explicitly define the scope of discourse.
We propose a new neural network framework with global attention to tackle these challenges.
Specifically, for each token in a query sentence, we propose to retrieve sentences that contain
the same token from document-level and corpus-level contexts (e.g., document-level and
corpus-level supporting evidence for “Zywiec” in Figure 1.2). To utilize this additional
information, we propose a model that first produces representations for each token that
encode the local context from the query sentence as well as the document-level and corpus-
level contexts from the retrieved sentences. Our model uses a document-level attention and
corpus-level attention to dynamically weight the document-level and corpus-level contextual
representations, emphasizing the contextual information from each level that is most relevant
to the local context and filtering noise such as the irrelevant information from the mention
“[LOC Zywiec]” in Figure 1.2. The model learns to balance the influence of the local,
document-level, and corpus-level contextual representations via gating mechanisms. Our
model predicts a tag using the local, gated-attentive document-level, and gated-attentive
corpus-level contextual representations, which allows our model to predict the correct tag,
ORG, for “Zywiec” in Figure 1.2.

Hypothesis 4. Distributed word embeddings/contextualized word embed-
dings of HL and LL can be projected into a shared space, so that machine
learning models trained on HL embeddings/contextualized embeddings can pro-
duce satisfying performance on LL.

Cross-lingual Word Embeddings - Conceptually, word embeddings are distributional
representations that aim to quantify and categorize semantic similarities between words.
They are unsupervisedly trained from massive monolingual text data. Word embeddings are
essential components of neural networks. A typical word-level neural model for name tagging
takes word embeddings as input, followed by a Recurrent Neural Network (RNN) over each
word to incorporate contextual information, and at the end, a feedforward network plus a
softmax or Conditional Random Field (CRF) layer predicts the labels. Word embeddings
are the crucial features that neural models rely on when making prediction.

If there exists a vector space where the structures of word embeddings from two lan-
guages are highly overlapped, a name tagging model trained on one language can be directly
adapted to the other language as the word embedding features used for prediction are shared
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Figure 1.3: A toy example of aligning cross-lingual word embeddings.

between the two languages. For a concrete example, in a Russian sentence “Путин уехал в
Москву (Putin went to Moscow)”, when Russian and English word embeddings are perfectly
aligned in a shared space, the closest English word embeddings to the Russian words are
“Putin”, “went”, “to” and “Moscow”. An English name tagger that classifies “Putin” as
PER and “Moscow” as GPE is able to classify “Путин” as PER and “Москву” as GPE.

[22] first observes that continuous word embedding spaces exhibit similar structures
across languages, even when considering distant language pairs such as English and Russian.
To exploit such similarity, [23, 24, 25] propose to learn a linear mapping between the source
and target word embedding spaces. The linear mapping is learned upon a bilingual dictionary
where words pairs are used as anchor points. They evaluate the linear mapping quality via a
word translation task. Recently, [26] proposes an adversarial approach that does not require
any bilingual dictionary to unsupervisedly learn the mapping. Figure 1.3 presents the process
of linearly aligning word embeddings of English and Chinese.

In our experiments, we utilize the MUSE toolkit that is published in [26] to unsuper-
visedly align word embeddings of HL and LL. We train a Bi-LSTM CRF name tagger on
HL labeled data by initializing its word embeddings with the aligned cross-lingual MUSE
embeddings during training. Then we directly adapt the HL name tagger to LL sentences by
taking the LL portion of cross-lingual embeddings as input. In the experiments, we consider
English as HL and Russian/Spanish as LL. Without any Russian/Spanish labeled data, the
English name tagger trained on cross-lingual word embeddings achieved 37.81% F-1 on
Russian (LRLP), 50.13% on Spanish (CoNLL 2003), compared to the state-of-the-art per-
formance using Russian/Spanish labeled training data: 57.66% and 83.31%. Moreover, when
annotations for LL are available, we initialize an LL name tagger with the English name tag-
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ger model parameters and finetune it on LL labeled data. The finetuned model achieved
65.17% and 83.61% on Russian and Spanish, which outperforms the state-of-the-art.

Cross-lingual Contextualized Word Embeddings - As trained on monolingual corpus,
fundamentally word embeddings only present the semantic meaning of words in that corpus,
but when given a context, word embeddings cannot represent the contextual information.
Contextualized word embedding is proposed to capture both semantic meanings and contex-
tual information of words in a sentence. As pre-training contextualized word embedding is
similar to training language model, the concept of contextualized word embeddings and lan-
guage model are sometimes interchangeable in literature. Contextualized word embedding
pre-training has shown to be effective for improving many NLP tasks [27, 28, 29, 30, 31, 32].
For the problem of name tagging, [30] first integrated a multi-layer Bi-LSTM pre-trained
language model to a Bi-LSTM CRF name tagger and significantly outperforms the state-of-
the-art. [31] uses a forward only transformer [33] pre-trained language model and [27] uses a
bi-directional transformer pre-trained language model to improve name tagger performance.
Especially [27] completely remove pre-trained word embeddings and only feed pre-trained
language model to a Bi-LSTM name tagging model and achieve a new state-of-the-art per-
formance. This observation somewhat proves pre-trained language model produces better
word representations over word embeddings.
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Figure 1.4: A toy example of projecting cross-lingual language model into a
shared space.

Inspired by the idea of aligning word embeddings, we investigate projecting the con-
textualized word embeddings (language model) of HL and LL into a shared space, so as
to further improve the language transferring capability of neural name taggers from HL
to LL. Pre-training cross-lingual word embeddings is essentially the process of learning a
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bilingual word translation, while pre-training cross-lingual language model aims to learn
word translation not only based on the word itself but also the context, which can largely
eliminate word ambiguity. For example, for an English phrase “apple operating system”,
English-Spanish cross-lingual word embeddings may produce word translations (“manzana”,
“operativo”, “sistema”) in which “manzana” refers to the fruit apple which is incorrect in
this case. While the cross-lingual contextualized word embedding of “apple” in this phrase is
positioned in the cluster of companies because of the context, and ideally it can be mapped
to the company Apple.

Our goal is to unsupervisedly pre-train cross-lingual contextualized word embeddings
from HL and LL monolingual corpora. [34] demonstrates the possibility of using “back-
translation” to unsupervisedly train a machine translation model. Following the same idea,
we use “back-translation” as the bridge to pre-train corss-lingual contextualized word em-
beddings. Experiments show that cross-lingual contextualized word embeddings significantly
outperforms cross-lingual word embeddings in name tagging language transferring task.

1.4 Task Definition
1.4.1 Problem Formulation

The most successful methods for name tagging are based on supervised learning, by
modeling name tagging as a sequence labeling problem. A tagging schema assigns each word
of the sentence a label that indicates its position in a name span and the type of the name.
The most commonly used schema is BIO where B stands for Begin, I stands for Inside, and
O stands for Outside. A more sophisticated tagging schema is BIOES(U) that distinguishes
between the end of a named entity and single entities, where BIOES(U) stands for Begin,
Inside, Outside, End and Single (Unique). BIOES has shown considerable performance
improvements over BIO [35]. Entity type is simply appended to the BIO tags with a “-” in
between, e.g. B-PER, I-PER, B-ORG, etc. Figure 1.2 shows an example represented with
BIO and BIOES schemas.

A sequence classifier such as a CRF or an RNN is trained to label the tokens in a text
with BIO tags.
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Words BIO BIOES
Barack B-PER B-PER
Hussein I-PER I-PER
Obama I-PER I-PER
II I-PER E-PER
is O O
an O O
American B-GPE S-GPE
attorney O O
and O O
politician O O
who O O
served O O
as O O
the O O
44th O O
President O O
of O O
the O O
United B-GPE B-GPE
States I-GPE E-GPE
. O O

Table 1.2: Named entity tagging as a sequence model, showing BIO and
BIOES schemas.

1.4.2 Evaluation

At the Fourth Message Understanding Conference (MUC-4) in 1992, F-measure was
first introduced to measure the performance of the message understanding systems. F-
measure provides a way of combining recall and precision to get a single measure which
fall between recall and precision. Recall and precision can have relative weights in the
calculation of the F-measure giving it the flexibility to be used for different applications [36].
The formula for calculating the F-measure is

F =
(β2 + 1.0) · P ·R

β2 · P +R
, (1.1)

where P is precision, R is recall, and β is the relative importance given to recall over
precision. In name tagging evaluation, β is set to 1.0 so that recall is as equally important
as precision. It yields the standard F-1 metric for name tagging:



12

F = 2 ·
P ·R
P +R

, (1.2)

In the F-1 metric, precision is the fraction of correctly tagged name spans among all
the tagged named spans, while recall is the fraction of named spans that have been correctly
tagged over the total amount of ground-truth named spans. More specifically, precision is
computed as:

P =
|{ground-truth names} ∩ {tagged names}|

|{tagged names}| (1.3)

, and recall is computed as:

R =
|{ground-truth names} ∩ {tagged names}|

|{ground-truth names}| (1.4)

1.5 Contributions of the Thesis
The novel contributions of the thesis include the following aspects:

• To the best of our knowledge, we are the first to explore non-traditional linguistic re-
sources, such as World Atlas of Linguistic Structure (WALS) and Central Intelligence
Agency (CIA) Names, and proved that they are beneficial for deep neural networks
based name tagging approaches. It illuminates the path of exploiting universal linguis-
tic resources to improve multilingual low-resource language name tagging, besides the
current research focus on machine learning model driven approaches.

• To overcome the ambiguity and insufficiency of local context in a sentence, we propose
to use multiple levels of contextual information (local, document-level, and corpus-
level) to improve name tagging performance. We designed a new global attention
framework to exploit extra contextual information and achieve the state-of-the-art.
Not limited to name tagging, the proposed idea can also be adopted to various tasks
where global contextual information is important, such as relation extraction and event
extraction.

• We introduce a new approach to train cross-lingual language model, and are the first to
incorporate cross-lingual word embeddings and cross-lingual language model to name
tagging for low-resource languages.
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Tagging [38], Boliang Zhang, Di Lu, Xiaoman Pan, Ying Lin, Halidanmu Abudukelimu,
Heng Ji, Kevin Knight, Proceedings of the Eighth International Joint Conference on
Natural Language Processing, 2017

• Global Attention for Name Tagging, Boliang Zhang, Spencer Whitehead, Lifu Huang,
Heng Ji, Proceedings of the 22nd Conference on Computational Natural Language
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Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Demonstrations.



Chapter 2
Related Work

2.1 Traditional Name Tagging
Name tagging is an active area of research for past three decades. A lot of progress has

been made in detecting named entities, but name tagging still remains a major challenge.
Rule-based systems [40, 41] typically use hand-crafted rules and exhaustive lexicons or

dictionaries to identify and classify named entities. They do not require annotated training
data but highly rely on domain specific knowledge. Generally they achieve high precision
because of the lexicons, while they suffer from low recall due to domain and language-specific
rules and incomplete dictionaries. Another drawback of rule-based systems is the need of
domain experts for constructing and maintaining the knowledge resources [42].

Statistical machine learning approaches soon take over rule-based systems in most
scenarios as their better generalization and adaptation capability. They are probabilistic
and use statistical models rather than deterministic rules. They learn to make predictions
by training on example input and their expected output. Early machine learning models
include Hidden Markov Model (HMM) [43, 44, 45, 46], Support Vector Machines (SVMs) [47],
Conditional Random Fields (CRFs) [48, 49], and decision trees [50]. [45] first introduces
HMM based name tagger on MUC-6 and MUC-7 data, achieving 96.6% and 94.1% F-1
score respectively. [51] compares the HMM with a SVM model on the CoNLL 2003 dataset.
They proposed multiple new features, including multiple window sizes and orthographic
features from neighboring words. They weight neighboring words features based on their
position and class to balance positive and negative classes. On the English CoNLL 2003
data, they achieved 88.3% F-1 score [42]. [52] and [53] use a CRF model to capture the
inter dependency between labels and achieved state-of-the-art results in the DrugNER task.
Besides orthographic features, more features are used in CRF, including lexicon resources,
word embeddings, dictionaries, etc.

The aforementioned statistical machine learning frameworks rely on domain-specific
features. Table 2.1 presents a list of typical features for name tagging.

Table 2.2 presents some features for a sample English sentence “Barack Hussein Obama
II is an American attorney and politician who served as the 44th President of the United

14
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Features Descriptions
Form Lowercase form of (w−1, w0, w+1)
Case whether w0 is uppercase
Syllable The first and last character of w0

Affix Affixes of (w−1, w0, w+1)
Gazetteer whether w0 is in gazetteers of PER, LOC, GPE, ORG, etc.
Embeddings word embeddings learned from monolingual corpus

Table 2.1: Typical features for a feature-based name tagging system.

States.”.

Words Form Case Syllable Gazetteer
previous word next first last PER LOC ORG GPE

Barack <SOS> barack hussein 1 B k 1 0 0 0
Hussein barack hussein obama 1 H n 1 0 0 0
Obama hussein obama ii 1 O a 1 0 0 0
II obama ii is 1 I I 0 0 0 0
is ii is an 0 i s 0 0 0 0
an is an american 0 a n 0 0 0 0
American an american attorney 1 A n 0 0 1 0
attorney american attorney and 0 a y 0 0 0 0
and attorney and politician 0 a d 0 0 0 0
politician and politician who 0 p n 0 0 0 0
who politician who served 0 w o 0 0 0 0
served who served as 0 s d 0 0 0 0
as served as the 0 a s 0 0 0 0
the as the 44th 0 t e 0 0 0 0
44th the 44th President 0 4 h 0 0 0 0
President 44th President of 1 P t 1 0 0 0
of President of the 0 o f 0 0 0 0
the of the United 0 t e 0 0 0 0
United the United States 1 U d 0 0 0 1
States United States . 1 S s 0 0 0 1
. States . <EOS> 0 . . 0 0 0 0

Table 2.2: An example of name tagging features for an English sentence.

The effectiveness of features highly relies on the application, genre, media, and lan-
guage. For example, morphological features, such as affixes and suffixes, are critical for
morphology rich languages but of little use with languages that do not have morphology,
such as Chinese. Compared to rule-based systems, feature-based machine learning methods
have improved generalization and adaptation abilities, but they merely turn human curated
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rules to “feature engineering” which still depends on hand-crafted and domain specific fea-
tures.

2.2 Neural Name Tagging
[54] is the first work to use neural network architecture for name tagging. They con-

struct feature vectors from orthographic features, in the same way as feature-based machine
learning method, but use multi-layer feed forward neural networks for label prediction. Later
work replaced these manually constructed feature vectors with word embeddings [55, 42],
which are representations of words in n-dimensional space, typically learned over large collec-
tions of unlabeled monolingual corpus through an unsupervised process such as continuous
bag-of-word (CBOW) and skip-gram model in [22, 42]. Afterwards, because of the big ad-
vantages on domain adaptation and generalization, neural network based approaches became
dominant in the field of name tagging. Approaches proposed in this thesis are extensions of
the basic neural networks towards multilingual name tagging.

The input of most neural name tagging models include word representations which
are embedding vectors that are randomly initialized or pre-trained from large monolingual
corpora, character representations which are computed by Recurrent Neural Networks (RNN)
or Convolutional Neural Networks (CNN) over characters of each word, and optionally, a set
of linguistic features that are crafted from external resources.

Word level architectures - In this architecture, the words of a sentence are given
as input to a Recurrent Neural Networks (RNN) and each word is represented by its word
embedding [42].

MAN

KING

QUEEN

WOMAN

MAN

KING

QUEEN

WOMAN

MAN

KING

QUEEN

+WOMAN

Figure 2.1: A toy word embedding example.
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Figure 2.2: Explanation of word embedding composition:
wKING − wMAN + wWOMAN = wQUEEN .

Word embeddings are essential components of neural networks. They are vectors of
real numbers in a high-dimensional space, and conceptually, they are distributional word
semantic representations that aim to quantify and categorize semantic similarities between
words. Word embeddings are unsupervisedly trained from monolingual corpus via various
methods such as Continuous Bag-of-words (BOW) and skip gram [22]. Figure 2.1 is a
toy word embedding example that shows vector offsets for three word pairs illustrating the
gender relation [56]. Figure 2.2 shows a famous analogy of relations between different word
embeddings: wKING −wMAN +wWOMAN = wQUEEN . The theory behind this is beyond the
scope of this chapter, we refer the reader to [56].

Pre-trained from a large monolingual corpus, word embeddings are features that cap-
ture each word’s global semantic representation in the entire corpus. Predicting the tag for
each token needs evidence from both of its previous context and future context in the entire
sentence. Given a specific context, we apply Recurrent Neural Networks on word embeddings
to retrieve context specific features. Bi-directional Long Short-term Memory (Bi-LSTM) net-
works [57] processes each sequence in both directions with two separate hidden layers, which
are then fed into the same output layer. Also, there are strong classification dependencies
among name tags in a sequence. For example, “I-LOC” cannot follow “B-ORG”. Conditional
Random Fields (CRFs) model, which is particularly good at jointly modeling tagging deci-
sions, can be built on top of the Bi-LSTM networks. Figure 2.3 shows a word level name
tagging neural architecture using Bi-LSTM and CRF.

Huang et al. [58] and Lample et al. [59] propose the first neural architecture consisting
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the the United44th President of StatesWords
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Figure 2.3: Word level Bidirectional LSTM name tagging architecture.

of a Bi-LSTM encoder and CRF output layer (Bi-LSTM CRF). This architecture has been
widely explored and demonstrated to be effective for sequence labeling tasks.

Character level architectures - As characters are the minimum unit of a sentence,
architectures combining word context and the characters of a word have been proven to be
strong name tagging approaches that need little domain-specific knowledge or resources. We
apply a Bi-LSTM or Convolutional Neural Networks (CNN) [60] on the characters of each
word in each sentence to generate a sequence of character level word representations. Then
each word is represented as a combination of a word embedding and a Bi-LSTM or CNN
over the characters of the word, followed with a Bi-LSTM layer over the word represen-
tations of a sentence. Figure 2.4 presents a word+character level embedding architecture.
Efforts incorporating character level compositional word embeddings into the Bi-LSTM CRF
architecture has improved performance include [60, 61, 62, 30, 29].

2.3 Multilingual and Low-resource Language Name Tagging
Recently, multilingual and low-resource language name tagging has drawn attention

from the NLP community as the neural networks learn features automatically from training
data and do not require language specific knowledge, which makes it possible to adapt neural
architectures that highly perform on one language to other languages. [63, 59] achieve state-
of-the-art scores using the same Bi-LSTM+Character embeddings architectures on CoNLL
2003 English, Dutch, German and Spanish dataset. Other neural multilingual name tagging
efforts are as follows, [64, 65, 66, 67] use bilingual labeled data, [68] uses naturally partially
annotated data such as Wikipedia, [69, 49, 70, 71, 41, 72] that uses traditional non-neural
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Figure 2.4: Word+character level Bidirectional LSTM name tagging
architecture.

unsupervised learning approaches.
Most of the aforementioned methods require labeled data. In situations where massive

clean annotations are insufficient or unavailable, the supervised learning methods including
DNN, are sensitive to noise, and are unable to achieve satisfying performance.

Various automatic annotation generation methods have been proposed to compensate
the data requirement, including knowledge base driven distant supervision [73, 74, 75], cross-
lingual projection [76, 65, 66, 67, 77, 78], and exploiting naturally existing noisy annotations
such as Wikipedia markups [79, 80, 81, 82, 83, 84, 85]. [63, 86] apply various transferring
methods to transfer name tagging capability from high-resource languages to low resource
languages. However, they still heavily rely on information redundancy, and they are sensitive
to noise.



Chapter 3
Noisy Annotation Acquisition

3.1 “Chinese Room”
In many emergent situations such as disease outbreaks and natural disasters, there

is great demand to rapidly develop a Natural Language Processing (NLP) system, such as
name tagger, for a “surprise” Incident Language (IL) with very few resources. Traditional
supervised learning methods that rely on large-scale manual annotations would be too costly.

We designed an interface where test sentences are presented to the player one by one.
When the player clicks token, the interface will display up to 100 manually labeled Tibetan
sentences that include this token. The player can also see translations of some common
words and a small gazetteer of common names (800 entries) in the interface.

14 players who don’t know Tibetan joined the game. Their name tagging F-scores
ranged from 0% to 94%. We found that good players usually bring in some kind of “expectations”
derived from their own native languages, or general linguistic knowledge, or background
knowledge about the scenario. Then they actively search, confirm, adjust and update these
expectations during tagging. For example, they know from English that location names are
often ended with suffix words such as “city” and “country”, so they search for phrases start-
ing or ending with the translations of these suffix words. After they successfully tag some
seeds, they will continue to discover more names based on more expectations. For exam-
ple, if they already tagged an organization name A, and now observe a sequence matching
a common English pattern “[A (Organization)]’s [Title] [B (Person)]”, they will tag B as
a person name. And if they know the scenario is about Ebola, they will be looking for a
phrase with translation similar to “West Africa” and tag it as a location. Similarly, based
on the knowledge that names appear in a conjunction structure often have the same type,
they propagate high-confidence types across multiple names. They also keep gathering and
synthesizing common contextual patterns and rules (such as position, frequency and length
information) about names and non-names to expand their expectations. For example, af-
ter observing a token frequently appearing between a subsidiary and a parent organization,
they will predict it as a preposition similar to “of ” in English, and tag the entire string
as a nested organization. Based on these lessons learned from this game, we develop an

20
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annotation platform to allow non-native speakers to annotate names in LL text.

3.2 Cross-lingual Name Projection
In low-resource settings where few clean annotations are available, we could try to

automatically generate some annotations to train the supervised model. For instance, we
can project automatic annotations from a HL to a LL through parallel data. Figure 3.1
shows an example of projecting English automatic name annotations to Hausa through a
parallel sentence pair.

Da take jawabi albarkacin bikin kaddamarwa, shugabar kungiyar [AU]ORG , [Nkosazana Dlamini-
Zuma]PER , ta bayyana jin dadinta kan wannan tallafi dake fitowa daga yankunan [Afrika]LOC daban 
daban domin yaki da annobar cutar Ebola a [yammacin Afrika]LOC. 

While speaking on the launch, the [AU]ORG president, [Nkosazana Dlamini-Zuma]PER, expressed her 
joy over the assistance coming from different parts of [Africa]LOC for the fight against Ebola 
virus in [West Africa]LOC.

English

Hausa

1 234

* Projection 1 is incorrect and results in a noisy instance in the automatically generated Hausa
annotations. The correct name mention is “kungiyar AU (Africa Union)” instead of “AU”.

Figure 3.1: Noisy Training Data Generation by Projecting English Automatic
Name Annotations to Hausa.

We use S to denote the sentences in LL and T to denote the sentences in HL. We
apply Stanford English name tagger [87] on T and project English names onto S, using the
following measurements to determine whether a candidate LL name string nl matches an
expected English name ne: (1) If the edit distance between ne and nl is not greater than
two. (2) We check the pronunciations of ne and nl based on Soundex [88], Metaphone [89]
and NYSIIS [90] algorithms. We consider two codes match if their edit distance is not
greater than two. (3) If ne and nl are aligned in the parallel data by running GIZA++ word
alignment tool [91]. In this way we obtain an automatically generated noisy training data
set.

3.3 Wikipedia Knowledge Base (KB) mining
In addition to unstructured documents, we also try to leverage structured English

knowledge bases (KBs) such as DBpedia.2 Each entry is associated with a set of types such
as Company, Actor and Agent. We utilize the Abstract Meaning Representation corpus [92]

2http://dbpedia.org
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which contains both entity type and linked KB title annotations, to automatically map 9, 514

entity types in DBPedia to three main entity types of interest: Person (PER), Location
(LOC) and Organization (ORG).

We need to select sentences for inclusion in our training corpus for which we are con-
fident of having correctly labeled all named entities. We use various criteria to filter out
unreliable sentences including: (1) sentences that shorter than five tokens or longer than
a hundred tokens are ignored, (2) sentences that are all capitalized are ignored, and (3)
sentences that have more than fifty percent tokens labeled as named entities are ignored.



Chapter 4
Incorporating Linguistic resources: Expectation-driven Learning

4.1 Time Zero: Language Universals
At time zero, we aim to rapidly build a rule-based name tagging system by language

universal resources. This system is used as a baseline approach. First we use some language
universal rules, gazetteers and patterns to generate a binary feature vector F = {f1, f2, ...}
for each token. Table 4.1 shows these features along with examples. An identification rule
is rI = ⟨TI , f = {fa, fb, ...}⟩ where TI is a “B/I/O” tag to indicate the beginning, inside or
outside of a name, and {fa, fb, ...} is a set of selected features. If the features are all matched,
the token will be tagged as TI . Similarly, a classification rule is rC = ⟨TC , f = {fa, fb, ...}⟩,
where TC is “Person/Organization/Location”. These rules are triggered in order, and some
examples are as follows: ⟨B, {AllUppercased}⟩, ⟨PER, {PersonGaz}⟩, ⟨ORG, {Capitalized,
LongLength}⟩, etc.

Features Examples (Feature name is underlined)

in English Gazetteer - PerGaz: person (472, 765); LocGaz: location (211, 872); OrgGaz:
organization (124, 403); Title (889); NoneName (2, 380).

Case - Capitalized; - AllUppercased; - MixedCase
Punctuation - IternalPeriod: includes an internal period
Digit - Digits: consisted of digits
Length - LongLength: a name including more than 4 tokens is likely to be

an ORG
TF-IDF - TF-IDF: if a capitalized word appears at the beginning of a sen-

tence, and has a low TF-IDF, then it’s unlikely to be a name
Patterns - Pattern1: “Title ⟨ PER Name ⟩”

- Pattern2: “⟨PERName⟩, 00∗,” where 00 are two digits
- Pattern3: “[⟨Namei⟩...], ⟨Namen − 1⟩⟨singleterm⟩⟨Namen⟩”
where all names have the same type.

Multi-occurrences - MultipleOccurrence: If a word appears in both uppercased and
lowercased forms in a single document, it’s unlikely to be a name.

Table 4.1: Universal Name Tagger Features
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4.2 Expectation Learning
4.2.1 Approach Overview

Figure 4.1 illustrates our overall approach of acquiring various expectations, by simu-
lating the strategies human players adopted during the Tibetan Room game. Next we will
present details about discovering expectations from each source.

Native Speaker

Expectation 
Acquisition Methods

Time 0 Time 1 Time 2

IL Documents

Universal 
Name Tagger

Native Speaker

Unsupervised Method

Supervised Method

Data 
SamplingAnnotating

CRF 
Model

Expectation Driven 
Tagger at Time 1

CRF Name Tagger 
at Time 1

Expectation Driven 
Tagger at Time 2

CRF Name Tagger 
at Time 2

Data 
SamplingAnnotating

CRF 
Model

Resources

Expectations

Expectation 
Acquisition Methods

More 
Expectations

Available Resources Expectations

IL Monolingual 
Corpora

IL to English 
Parallel Data

English NER 
Patterns

Native Speaker

Expectation Acquisition

IL Pattern Mining

Pattern Translation

IL Language Survey

English Information Extraction

Word Alignment

English KB 
(DBpedia)

IL to English Lexicons

IL Specific Rules

IL Name Patterns

Gazetteers

Entity Linker Typing

Comparable 
English Corpora

Figure 4.1: Expectation Driven Name Tagger Overview

4.2.2 Survey with Native Speaker

The best way to understand a language is to consult people who speak it. We introduce
a human-in-the-loop process to acquire knowledge from native speakers. To meet the needs
in the emergent setting, we design a comprehensive survey that aims to acquire a wide-range
of IL-specific knowledge from native speakers in an efficient way. The survey categorizes
questions and organizes them into a tree structure, so that the order of questions is chosen
based on the answers of previous questions. The survey answers are then automatically
translated into rules, patterns or gazetteers in the tagger. Some example questions are
shown in Table 4.2.
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True/False Questions
1. The letters of this language have upper and lower cases
2. The names of people, organizations and locations start with a capitalized (up-
percased) letter
3. The first word of a sentence starts with a capitalized (uppercased) letter
4. Some periods indicate name abbreviations, e.g., St. = Saint, I.B.M. = Interna-
tional Business Machines.
5. Locations usually include designators, e.g., in a format like “country United
states”, “city Washington”
6. Some prepositions are part of names
Text input
1. Morphology: please enter preposition suffixes as many as you can (e.g. “’da” in
“Ankara’da yaşıyorum (I live in Ankara)” is a preposition suffix which means “in”).
Translation
1. Please translate the following English words and phrases:
- organization suffix: agency, group, council, party, school, hospital, company, office,
...
- time expression: January, ..., December; Monday, ..., Sunday; ...

Table 4.2: Survey Question Examples

4.2.3 Mono-lingual Expectation Mining

We use a bootstrapping method to acquire IL patterns from unlabeled mono-lingual
IL documents. Following the same idea in [93, 94], we first use names identified by high-
confident rules as seeds, and generalize patterns from the contexts of these seeds. Then we
evaluate the patterns and apply high-quality ones to find more names as new seeds. This
process is repeated iteratively.3

We define a pattern as a triple ⟨left, name, right⟩, where name is a name, left and
right4 are context vectors with weighted terms (the weight is computed based on each token’s
tf-idf score). For example, from a Hausa sentence “gwamnatin kasar Sin ta samar wa
kasashen yammacin Afirka ... (the Government of China has given ... products to the West
African countries)”, we can discover a pattern:

• left: ⟨gwamnatin (goevernment), 0.5⟩, ⟨kasar (country), 0.6⟩
• name: ⟨Sin (China), 0.5⟩
• right: ⟨ta (by), 0.2⟩

3We empirically set the number of iterations as 2 in this paper.
4left and right are the context three tokens before and after the name



26

This pattern matches strings like “gwamnatin kasar Fiji ta (by the government of Fiji)”.
For any two triples ti = ⟨li, namei, ri⟩ and tj = ⟨lj, namej, rj⟩, we comput e their

similarity by:
Sim(ti, tj) = li · lj + ri · rj

We use this similarity measurement to cluster all triples and select the centroid triples in
each cluster as candidate patterns.

Similar to [93], we evaluate the quality of a candidate pattern P by:

Conf(P ) =
Ppositive

(Ppositive + Pnegative)

,where Ppositive is the number of positive matches for P and Pnegative is the number of negative
matches. Due to the lack of syntactic and semantic resources to refine these lexical patterns,
we set a conservative confidence threshold 0.9.

4.2.4 Cross-lingual Expectation Projection

Name tagging research has been done for high-resource languages such as English for
over twenty years, so we have learned a lot about them. We collected 1,362 patterns from
English name tagging literature [95, 96, 97]. Some examples are listed below:

• ⟨{}, {PER}, {< say >,< . >}⟩

• ⟨{< headquarter >,< in >}, {LOC}, {}⟩

• ⟨{< secretary >,< of >}, {ORG}, {}⟩

• ⟨{< in >,< the >}, {LOC}, {< area >}⟩

4.3 Supervised Active Learning
We anticipated that not all expectations can be encoded as explicit rules and patterns,

or covered by projected names, therefore for comparison we introduce a supervised method
with pool-based active learning to learn implicit expectations (features, new names, etc.)
directly from human data annotation. We exploited basic lexical features including ngrams,
adjacent tokens, casing information, punctuations and frequency to train a Conditional Ran-
dom Fields (CRFs) [98] based model through active learning [99].
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We segment documents into sentences and use each sentence as a training unit. Let x∗
b

be the most informative instance according to a query strategy ϕ(x), which is a function used
to evaluate each instance x in the unlabeled pool U . Algorithm 1 illustrates the procedure.

Algorithm 1 Pool-based Active Learning
1: L← labeled set, U ← unlabeled pool
2: ϕ(·)← query strategy, B ← query batch size
3: M ← maximum number of tokens
4: while Length(L)< M do
5: θ = train(L);
6: for b ∈ {1, 2, ..., B} do
7: x∗

b = argmaxx∈U ϕ(x)
8: L = L ∪ {x∗

b , label(x∗
b)}

9: U = U − x∗
b

10: end for
11: end while

[100] proposed an entropy measure for active learning for image retrieval task. We
compared it with other measures proposed by [101] and found that sequence entropy
(SE) is most effective for our name tagging task. We use ϕSE to represent how informative
a sentence is:

ϕSE(x) = −
T∑

t=1

M∑
m=1

Pθ(yt = m)logPθ(yt = m)

, where T is the length of x, m ranges over all possible token labels and Pθ(yt = m) is the
probability when yt is tagged as m.

4.4 Cost-aware Combination
A new requirement for IL name tagging is a Linguistic Workflow Generator, which

can generate an activity schedule to organize and maximize the use of acquired expectations
to yield optimal F-scores within given time bounds. Therefore, the input to the IL name
tagger is not only the test data, but also a time bound for development (1 hour, 2 hours, 24
hours, 1 week, 1 month, etc.).

Figure 4.2 illustrates our cost-aware expectation composition approach. Given some
IL documents as input, as the clock ticks, the system delivers name tagging results at time
0 (immediately), time 1 (e.g., in one hour) and time 2 (e.g., in two hours). At time 0,
name tagging results are provided by the universal tagger described in Section 4.1. During
the first hour, we can either ask the native speaker to annotate a small amount of data for
supervised active learning of a CRFs model, or fill in the survey to build a rule-based tagger.
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Language IL Test Docs Name Unique Name IL Dev. Docs IL-English Docs
Bengali 100 4,713 2,820 12,495 169
Hausa 100 1,619 950 13,652 645
Tagalog 100 6,119 3,375 1,616 145
Tamil 100 4120 2,871 4,597 166
Thai 100 4,954 3,314 10,000 191
Turkish 100 2,694 1,323 10,000 484
Yoruba 100 3,745 2,337 427 252

Table 4.3: Data Statistics

We estimate the confidence value of each expectation-driven rule based on its precision score
on a small development set of ten documents. Then we apply these rules in the priority
order of their confidence values. When the results of two taggers are conflicting on either
mention boundary or type, if the applied rule has high confidence we will trust its output,
otherwise adopt the CRFs model’s output.
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Figure 4.2: Cost-aware Expectation Composition

4.5 Experiments
In this section we will present our experimental details, results and observations.

4.5.1 Data

We evaluate our framework on seven low-resource incident languages: Bengali, Hausa,
Tagalog, Tamil, Thai, Turkish and Yoruba, using the ground-truth name tagging annotations
from the DARPA LORELEI program.5 Table 4.3 shows data statistics.

5http://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
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4.5.2 Cost-aware Overall Performance

We test with three checking points: starting time, within one hour, and within two
hours. Based on the combination approach described in Section 4.4, we can have three possi-
ble combinations of the expectation-driven learning and supervised active learning methods
during two hours: (1) expectation-driven learning + supervised active learning; (2) super-
vised active learning + expectation-driven learning; and (3) supervised active learning for
two hours. Figure 4.3 compares the overall performance of these combinations for each
language.

We can see that our approach is able to rapidly set up a name tagger for an IL and
achieves promising performance. During the first hour, there is no clear winner between
expectation-driven learning or supervised active learning. But it’s clear that supervised
active learning for two hours is generally not the optimal solution. Using Hausa as a case
study, we take a closer look at the supervised active learning curve as shown in Figure 4.4.
We can see that supervised active learning based on simple lexical features tends to converge
quickly. As time goes by it will reach its own upper-bound of learning and generalizing
linguistic features. In these cases our proposed expectation-driven learning method can
compensate by providing more explicit and deeper IL-specific linguistic knowledge.

4.5.3 Comparison of Expectation Discovery Methods

Table 4.4 shows the performance gain of each type of expectation acquisition method.
IL gazetteers covered some common names, especially when the universal case-based rules
failed at identifying names from non-Latin languages. IL name patterns were mainly effec-
tive for classification. For example, the Tamil name “கத்தோலிக்கன் சிரியன் வங்கியில (Catholic
Syrian Bank)” was classified as an organization because it ends with an organization suffix
word “வங்கியில(bank)”. The patterns projected from English were proven very effective at
identifying name boundaries. For example, some non-names such as titles are also capital-
ized in Turkish, so simple case-based patterns produced many spurious names. But projected
patterns can fix many of them. In the following Turkish sentence, “Ancak Avrupa Birliği Dış
İlişkiler Sorumlusu Catherine Ashton,...(But European Union foreign policy chief Catherine
Ashton,...)”, among all these capitalized tokens, after we confirmed “Avrupa Birliği (Eu-
ropean Union)” as an organization and “Dış İlişkiler Sorumlusu (foreign policy chief)” as
a title, we applied a pattern projected from English “[Organization] [Title] [Person]” and
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(a) Bengali (b) Hausa

(c) Tamil (d) Tagalog

(e) Thai (f) Turkish

(g) Yoruba

Figure 4.3: Comparison of methods combining expectation-driven learning and
supervised active learning given various time bounds
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Figure 4.4: Hausa Supervised Active Learning Curve

Methods Bengali Hausa Tamil Tagalog Thai Turkish Yoruba
Universal Rules 4.1 26.5 0.0 30.2 2.2 12.4 17.1
+IL Gazetteers 29.7 32.1 21.8 34.3 18.9 17.3 26.9
+IL Name Patterns 31.2 33.8 22.9 35.1 18.9 19.1 28.0
+IL to English Lexicons 31.3 35.2 24.0 38.0 20.5 19.6 29.4
+IL Survey with Native Speaker 34.1 40.6 25.6 45.9 21.6 39.3 30.2
+KB Linking based Typing 34.8 48.3 26.0 51.3 21.7 43.6 36.0

Table 4.4: Contributions of Various Expectation Discovery Methods (F-score
%)

successfully identified “Catherine Ashton” as a person. Cross-lingual entity linking based
typing successfully enhanced classification accuracy, especially for languages where names
often appear the same as their English forms and so entity linking achieved high accuracy.
For example, “George Bush” keeps the same in Hausa, Tagalog and Yoruba as English.

4.5.4 Impact of Supervised Active Learning

Figure 4.5 shows the comparison of supervised active learning and passive learning
(random sampling in training data selection). We asked a native speaker to annotate Chinese
news documents in one hour, and estimated the human annotation speed approximately
as 7,000 tokens per hour. Therefore we set the number of tokens as 7,000 for one hour,
and 14,000 for two hours. We can clearly see that supervised active learning significantly
outperforms passive learning for all languages, especially for Tamil, Tagalog and Yoruba.
Because of the rich morphology in Turkish, the gain of supervised active learning is relatively
small because simple lexical features cannot capture name-specific characteristics regardless
of the size of labeled data. For example, some prepositions (e.g., “nin (in)”) can be part of
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Figure 4.5: Active Learning vs. Passive Learning (%)

the names, so it’s difficult to determine name boundaries, such as “<ORG Ludian bölgesi
hastanesi>nin (in <ORG Ludian Hospital>)”



Chapter 5
Incorporating Linguistic resources: Non-traditional Linguistic

Resources

5.1 Non-traditional Linguistic Resources
There is a general agreement that Deep Neural Networks provides a general, powerful

underlying model for Information Extraction (IE), confirmed by improved state-of-the-art
performance on many tasks such as name tagging [102, 103], relation classification [104, 105,
106, 107] and event detection [106, 108, 109, 110, 111]. For example, our experiments on
several languages show that a DNN-based name tagger generally outperforms (up to 6% F-
score gain) a Conditional Random Fields (CRFs) model trained from the same labeled data
and feature set. DNN architecture is attractive to couple with character/word embeddings
for IE tasks because it is easy to learn and usually effective enough to eliminate the need of
explicit linguistic feature design.

In order to compensate the DNN name tagging data requirement, various automatic
annotation generation methods have been proposed, including knowledge base driven dis-
tant supervision [73, 74, 75], cross-lingual projection [76, 65, 66, 67, 77, 78], and leveraging
naturally existing noisy annotations such as Wikipedia markups [79, 80, 81, 82, 83, 84, 85].
Annotations produced from these methods are usually very noisy, while DNN is sensitive to
noise just like many other machine learning methods. Our name tagging experiment shows
that the F-score of the same DNN model learned from noisy training data is 20-30% lower
than that trained from clean data. One major reason is that most of these methods solely
rely on implicit embedding features in order to be (almost) language-independent.

On an almost parallel research avenue, linguists and domain experts have created a wide
variety of multi-lingual resources, such as World Atlas of Linguistic Structure (WALS) [18],
Central Intelligence Agency (CIA) Names, grammar books, and survival guides. Such re-
sources have been largely ignored by the mainstream statistical NLP research, because they
were not specifically designed for NLP purpose at the first place and they are often far from
complete. Thus they are not immediately actionable - converted into features, rules or pat-
terns for a target NLP application. In this chapter we design various methods to convert
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them into machine readable features for a new DNN architecture. Limited previous work
only used them for resource building (e.g., [112]) or studying word order typology [113].

We aim to answer the following research questions: How to effectively acquire linguistic
knowledge from non-traditional resources, and represent them for computational models?
How much further gain can be obtained in addition to traditional resources?

5.2 Approach Overview
5.2.1 Baseline’s Sensitiveness to Noise

In this section, we present the method to acquire various noise level training data, and
show the sensitiveness of the DNN baseline to noise.

Given a parallel corpus of LL and HL (English), we use S to denote the sentences in
LL and T to denote the sentences in HL. Utilizing the approach mentioned in Section 3.2,
we obtain an automatically generated noisy training data set from parallel sentences. We
denote Trainnoise as the obtained noisy training data, and Trainclean as the ground truth
which is manually created by human annotators on set S. We mix Trainnoise and Trainclean

in different proportions to obtain a training set Trainmix on various noise levels. We define
noise level as 1 − fscore(Trainmix) where the f-score of Trainmix is computed against
Trainclean. For example, when Trainmix is full of manually created clean data, the noise
level is 0; when we mix half Trainnoise and half Trainclean of the Hausa data, the f-score of
Trainmix is 80.1%, and the noise level is 19.9%.

To learn embeddings, we use 12,624 Hausa documents from the LORELEI program,
and use 288,444 Turkish documents and 128,763 Uzbek documents from a June 2015 Wikipedia
dump. Figure 5.1 shows the performance of the baseline tagger trained from Trainmix for
three languages. We can clearly see that the performance drops rapidly as the training data
includes more noise.

5.2.2 A New Improved Model

We propose to acquire non-traditional linguistic resources and encode them as new
actionable features (Section 5.3). In Figure 5.2, we design three integration methods to
incorporate explicit linguistic features into Bi-LSTM networks: (1) concatenate the linguistic
features and word embeddings at the input level, (2) concatenate the linguistic features and
the bidirectional encodings of each token before feeding them into the output layer that
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Figure 5.1: Performance of baseline DNN Name Taggers Trained from Data
with Various Noise Levels (The noise level is created by assigning
the proportion of Trainnoise in Trainmix as 0%, 25%, 50%, 75% and
100% respectively. )

computes the tag probability, and (3) use an additional Bi-LSTM to consume the feature
embeddings of each token and concatenate both Bi-LSTM encodings of feature embeddings
and word embeddings before the output layer. We set the word input dimension to 100,
word LSTM hidden layer dimension to 100, character input dimension to 50, character
LSTM hidden layer dimension to 25, input dropout rate to 0.5, and use stochastic gradient
descent with learning rate 0.01 for optimization.

5.3 Incorporating Non-traditional Linguistic Knowledge
In this section we will describe the detailed methods to acquire and encode various

types of non-traditional resources. We call them as non-traditional because they have been
rarely used in previous NLP research.

5.3.1 Basic Knowledge about the Language

Wikipedia Description. An English Wikipedia page about a language usually pro-
vides us general descriptions of the language. In particular, the list of usable characters,
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Figure 5.2: Three Integration Methods to Incorporate Explicit Linguistic
Features into DNN.

gender indicators, capitalization information, transliteration and number spelling rules are
most useful for name tagging. The list of usable characters for regular words in a particular
language can help us detect foreign borrow words, which are likely to be names. For example,

“th” usually does not appear at the beginning of a Turkish word. Thus “Thomas
Marek” is likely to be a foreign name.

Grammar Book. From grammar books we can also extract more language-specific
contextual words, prefixes, suffixes and stemming rules. Name related lists contain: case
suffix, preposition, postposition, ordinal number, definite article, negation, conjunction, pro-
noun, quantifier, numeral, time, locative, question particle, demonstrative, degree word, plu-
ral prefix/suffix, subordinator, reduplication, possessive, situational and epistemic markers.
Table 5.1 shows some examples of name related suffix features.

5.3.2 Linguistic Structure

Recently linguists have made great efforts at building linguistic knowledge bases for
thousands of languages in the world. Two such examples are WALS database [114] and Syn-
tactic Structures of the World’s Languages.6 These databases classify languages according
to a large number of topological properties (phonological, lexical and grammatical). For ex-
ample, WALS consists of 141 maps with accompanying text on diverse properties, gathered

6http://sswl.railsplayground.net/
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Languages Features Description Examples

Uzbek Name -ni (accusative), -ning (pos-
sessive), -da (locative), -dan
(ablative)

Turkiyaning (of Turkey), Turkiyada
(in Turkey), Turkiyaga (to Turkey),
Turkiyadan (from Turkey).

Non-
Name

Suffix -roq indicates adjec-
tives

qoraroq (darker)

Suffixes -lar/-ler indicate
plurals

qizlar (daughters)

Name

Foreign name with >1 tokens
and an adjective marker

New York-i (from New York)

Most names with adjective or
verbal suffix are lowercased

Balzac + -os ⇒ balzacos

Hungarian Possession relation Péter-ék (Peter and his group), Péter-é
(that of Peter)

Affixes associated with names Sartre-nak (to Sartre), Bordeaux-ban (in
Bordeaux), Smith-ért (for Smith)

Non-
Name

Non-Name POS tag adjectives (-tlen: “-less”), verbs tense
(meg-:“completed”), conjunctions (-ért:
“because of”)

Complete inflectional for
nominals

karoknak (for arms) → karok (arms) → kar
(arm)

Uyghur Name Animacy suffixes ning, ni, luq, and lik
Geopolitical or location suf-
fixes

ke, ge, qa, gha, te, de, ta, da, tin,
din, tiki, diki, kiche, giche, qiche, and
ghiche.

Turkish Name Postpositions karaköyde (in Karaköy)

Table 5.1: Name-related Knowledge Summarized from Grammar Books.

from descriptive materials (such as reference grammars).
Altogether there are 2,676 languages and more than 58,000 data points; each data

point is a (language, feature, feature value) tuple that specifies the value of the feature in
a particular language. (e.g., (English, canonical word order, SVO)). In total we extract
188 linguistic properties related to name tagging, belonging to 20 Phonology, 13 Lexicon,
12 Morphology, 29 Nominal, 8 Nominal Syntax, 17 Verbal Categories, 56 Word Order, 26
Simple Clauses, and 7 Complex Sentences categories respectively. Table 5.2 shows some
examples.

5.3.3 Multi-lingual Dictionaries

CIA Names. We utilize the CIA Name Files,7 which include biographical sketches,
memorandums, telegrams, legislative records, legal documents, statements, and other records.
We used the version cleaned up by Lawson et al.8 that includes documents about names

7https://www.archives.gov/iwg/declassified-records/rg-263-cia-records
8https://www.researchgate.net/profile/Edwin_Lawson
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Languages Categories Description Name Related Characteris-
tics

Tagalog Subject,
Verb, Object
Order

VS, VO, VSO the word at the beginning
of a sentence is unlikely to
be a name

Turkish Negation Suffix -me at the root of a verb indicates
negations

not a name

Bengali Animacy -ta is a case that indicates inanimacy
Thai Nested

Name Struc-
ture

Delimiter between modifier and head,
[ORG กระทรวงต่างประเทศ] ของ[LOC
อินโดนีเซีย] ([ORG Foreign Ministry ] of
[LOC Indonesia])

Name boundary

Tamil Conjunction
Structure

Name1-yum Name2-yum (Name1 and
Name2)

Name type consistency

Table 5.2: Name-related Knowledge Extracted from WALS.

in 41 languages. Besides, person names in certain regions often include some common syl-
lable patterns. Table 5.3 presents some examples. In languages such as Turkish, Uzbek
and Uyghur, a person’s last name inherits from his or her father’s first name. In Uyghur,
there are no additional suffixes. In Uzbek, additional suffixes include “-ov”, “-ev”, “-yev”,
“-eva” and “-yeva”. In Turkish, a male’s first name often ends with a consonant, and his last
name consists of his father’s first name and a suffix “-oğlu (son of)”. We exploit this kind of
knowledge to improve gazetteer match and name boundary identification.

Languages Frequent Syllable Patterns Examples
Slavic Suffixes: -ov, -ev -ova, -eva; -ovich, -ich, -enko,

-ko, -chuk, -yuk, -ak, -chenko, -skiy, -ski, -vych,
-vich

Karimov, Yuriy Yarov, Abdulaziz
Komilov, Yamonkulov Yaxshiboyevich,
Shevchenko

Arabic Prefixes: al-, Ahl, Abdul-, Abdu- Abdul Khaliq, Abdul Latif, Abdul
Maajid

Suffixes: -allah, -ullah Daifallah, Dhikrullah, Faizullah,
Fathallah

Uzbek Suffixes: -ov, -ova, -ev -yev, -eva, -yeva; -ovich,
-evich, -ich

Karim Ahmedov, Ahmed Aliev, Zul-
fiya Karimova, Karmm Sharafovich
Rashidov

Table 5.3: Common Syllable Patterns Extracted from CIA Names.

Unicode CLDR. Unicode Common Locale Data Repository (CLDR)9 is a data collec-
tion for 194 languages, maintained by the Unicode Consortium to support software interna-
tionalization and localization. We extract bi-lingual location gazetteers, and exploit patterns
and lists of currencies, months, weekdays, day periods and time units to remove them from

9http://cldr.unicode.org/
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name candidates because they share some features with names (e.g., capitalization, “Ocak”
in Turkish means “January”).

Wiktionary. Wiktionary10 is a web-based collaborative project to create an English
content dictionary of all words in many languages. We collected dictionaries in 1,247 lan-
guages.

Panlex. Panlex11 [115, 116] database contains 1.1 billion pairwise translations among
21 million expressions in about 10,000 language varieties.

Multilingual WordNet. We leverage three versions of multi-lingual WordNet: (1)
Open Multilingual WordNet [117] which links words in many languages to English Word-
Net based on Wiktionary and CLDR; (2) Universal WordNet [118] which automatically
extends English WordNet with around 1.5 million meaning links for 800,000 words in over
200 languages, based on WordNets, translation dictionaries and parallel corpora; and (3)
Etymological WordNet [119, 120] that provides information about how words in various
languages are etymologically related based on Wiktionary.

Phrase Pairs Mined from Wikipedia. From Wikipedia we extracted all pairs of
titles that are connected by cross-lingual links. And we extracted more phrase translation
pairs using parenthesis patterns from the beginning sentences of Wikipedia pages. For exam-
ple, from the first sentence of the English Wikipedia page about Ürümqi: “Ürümqi (ئۈرۈمچى)
is the capital of the Xinjiang Uyghur Autonomous Region of the People’s Republic of China
in Northwest China,” we can extract an Uyghur-English name translation pair of ”ئۈرۈمچى“
and “Ürümqi”. Moreover, we retrieved related Wikipedia articles, and mined common names
in many languages and regions.

GeoNames. We exploit the geo-political and location entities in multilingual GeoN-
ames database.12 It contains over 10 million geographical names and over 9 million unique
features of the following properties: id, name, asciiname, alternate names, latitude, longi-
tude, feature class, feature code, country code, administrative code, population, elevation
and time zone.

JRC Names. Finally we include the JRC Names [121], a large list of person and
organization names (about 205,000 entries) in over 20 different scripts. Some entries include
additional information such as frequency, title and date ranges.

10https://en.wiktionary.org
11http://panlex.org/
12http://www.geonames.org/
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Language Gazetteer Title Non-Name Suffix
PER LOC ORG

Hausa 1,174 5,123 199 42 391 21
Turkish 2,819 7,271 262 231 411 181
Uzbek 1,771 5,331 103 178 271 209

Table 5.4: Name Related List Statistics (# of entries).

5.3.4 Encoding Linguistic Features

We merged the linguistic resources collected above into three types of features: (1)
name gazetteers; (2) list of suffixes and contextual words (e.g., titles) that indicate names;
and (3) list of words that indicate non-names (e.g., time expressions). Ultimately we obtained
30 explicit linguistic feature categories. Table 5.4 shows the statistics of the encoded features.

For each token wi in a sentence, we check whether wi, its previous token wi−1 and its
next token wi+1 exist in these lists, and concatenate them into an initial feature vector for
wi. For any resources (e.g., lexicons and phrase books) that contain English translations,
we also use them to translate each wi, and check whether its translation is capitalized or
exists in English name tagging resources (contextual words, gazetteers), whether its contexts
match any English patterns as described in [37].

5.4 Experiments
Using the data sets mentioned in Section 5.2.1, we conduct experiments for three

languages: Hausa, Turkish and Uzbek.
Table 5.5 compares the results of three feature integration methods described in Sec-

tion 5.2.2 and Figure 5.2. We can see that the third integration method (Integration 3)
consistently outperforms the others for all three languages.

Models Hausa Turkish Uzbek
Bi-LSTMs 65.7 65.9 64.1
+ Integration 1 71.1 71.8 67.4
+ Integration 2 71.5 73.1 67.2
+ Integration 3 72.2 74.3 68.4

Table 5.5: Feature Integration Methods Comparison.

We compare the following models: a baseline model that uses only character and word



41

embedding features, a model adding traditional linguistic features as described in [37], and a
model further adding non-traditional linguistic features using the third integration method.
Figure 5.3 presents the results. Clearly models trained with linguistic features substantially
outperform the baseline models on all noise levels for all languages. As the noise level
increases, the performance of the baseline model drops drastically while the model trained
with linguistic features successfully curbs the downward trend and forms a relatively flat
curve at last. Adding non-traditional linguistic features provides further gains in almost
all settings. Notably for Turkish, adding linguistic features and using 100% automatically
generated noisy training data, our approach achieves the same performance as the baseline
model using 75% manually created clean data and 25% automatically created noisy data.
In other words, explicit linguistic knowledge has significantly saved annotation cost (2,367
sentences). Our results without using any manually labeled training data are much better
than state-of-the-art reported in our previous work [37] which used most traditional resources
mentioned in this paper and [85] which derived noisy training data from Wikipedia markups.
On the same test sets we achieved 5.5% higher F-score for Hausa than [37], 27.7% higher
F-score for Turkish and 13.6% higher F-score for Uzbek than [85].
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Figure 5.3: Name Tagging Performance.

Table 5.6 presents the contribution of each linguistic feature category when using 100%
automatically created training data. Figure 5.4 shows some examples of errors corrected by
each category.
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Category Hausa Turkish Uzbek
A Embedding feature 45.8 39.5 43.3
B (A)+Pattern mining and projection 46.7 40.9 45.4
C (B)+Basic knowledge and linguistic structure 50.4 53.3 52.4
D (C)+Dictionaries 52.0 57.7 56.1
E (D)+Phrase books 53.8 60.0 57.8

Table 5.6: Contributions of Various Categories of Linguistic Knowledge
(F-score (%)).

Pattern mining and projection
Turkish Quinnipiac Üniversitesi, CBS haber kanalı ve New York Times gazetesi tarafından yapılan seçim anketlerinde… 
Model A
Model B
Translation Polls of Quinnipiac University, CBS news channel, and the New York Times …
Basic knowledge and linguistic structure
Turkish Ankara , ve muğladan yüzyüze satılacaktır …
Model B
Model C                                               Model C uses morphological suffix “-dan” (from/via) to identify the name.
Translation It would be sold personally from Ankara and Muğla...
Dictionaries
Hausa An samu dukkan gawawwakin wadanda suka mutu sakamakon balaʼin zabtarewar kasa a lardin Yunnan.
Model C
Model D      Model D identifies the location with location designator “lardin (province)” in the dictionary
Translation It is found all the bodies of those who died in the disastrous landslides in Yunnan Province.
Phrase books
Uzbek AQShning Xonobod bazasi uchun to’lov masalasi tortishuvga sabab bo’lmoqda.
Model D                                                                Model E correctly classifies the mention as ORG since “Xonobod bazasi (Khanabad base)” is in
Model E                                                                the phrase book.
Translation US-Khanabad base to debate the issue of payment.

ORG LOC Missing

Model B corrects the boundary of “CBS harber kanalı” by 
using the pattern: [<Namei> …], <Namen-i> <single term> 
<Namen>, where all names have the same type.

Figure 5.4: Examples of Corrections Made by Each Category of Linguistic
Knowledge.



Chapter 6
Global Attention for Name Tagging

6.1 Approach Overview
Local context (i.e., surrounding tokens) is crucial for name tagging because the context

gives insight to the semantic meaning of the token. However, in cases where the local context
is ambiguous or lacks sufficient content, the classifier would fail to make correct predictions.
In this section, we propose the document-level, and corpus-level attention to incorporate
external contextual information to address this challenge.

6.1.1 Document-level Attention

So far this year Zywiec, whose full name is
Zaklady Piwowarskie w Zywcu SA , has netted six
million zlotys on sales of 224 million zlotys .

So far this year Zywiec , whose full name is Zaklady Piwowarskie w Zywcu SA , has
netted six million zlotys on sales of 224 million zlotys .

Polish brewer Zywiec 's 1996 profit slump may last into next year due in part to
hefty depreciation charges , but recent high investment should help the firm defend
its 00percent market share , the firm 's chief executive said .

Van Boxmeer also said Zywiec would be boosted by its recent shedding of soft drinks
which only accounted for about three percent of the firm 's overall sales and for
which 0.0 million zlotys in provisions had already been made .

The two largest brands are Heineken and Amstel. 

The list includes Cruzcampo, Affligem and Zywiec .
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inhabitants (as of November 2007). 

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

Corpuslevel supporting sentences

Documentlevel supporting sentences

Figure 6.1: Document-level Attention Architecture. (Within-sequence context
in red incorrectly indicates the name as PER, and document-level
context in green correctly indicates the name as ORG.)

Many entity mentions are tagged as multiple types by the baseline approach within
the same document due to ambiguous contexts (14.43% of the errors in English, 18.55%
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in Dutch, and 17.81% in German). This type of error is challenging to address as most of
the current neural network based approaches focus on evidence within the sequence when
making decisions. In cases where a sentence is short or highly ambiguous, the model may
either fail to identify names due to insufficient information or make wrong decisions by using
noisy context. In contrast, a human in this situation may seek additional evidence from
other sentences within the same document to improve judgments [122].

In Figure 1.2, the baseline model mistakenly tags “Zywiec” as PER due to the ambigu-
ous context “whose full name is...”, which frequently appears around a person’s name.
However, contexts from other sentences in the same document containing “Zywiec” (e.g., sq
and sr in Figure 6.1), such as “'s 1996 profit...” and “would be boosted by its recent

shedding...”, indicate that “Zywiec” ought to be tagged as ORG. Thus, we incorporate the
document-level supporting evidence with the following attention mechanism [123].

Formally, given a document D = {s1, s2, ...}, where si = {wi1, wi2, ...} is a sequence of
words, we apply a Bi-LSTM to each word in si, generating local contextual representations
hi = {hi1,hi2, ...}. Next, for each wij, we retrieve the sentences in the document that contain
wij (e.g., sq and sr in Figure 6.1) and select the local contextual representations of wij from
these sentences as supporting evidence, h̃ij = {h̃

1

ij, h̃
2

ij, ...} (e.g., h̃qj and h̃rk in Figure 6.1),
where hij and h̃ij are obtained with the same Bi-LSTM. Since each representation in the
supporting evidence is not equally valuable to the final prediction, we apply an attention
mechanism to weight the contextual representations of the supporting evidence:

ekij = v⊤ tanh
(
Whhij +Wh̃h̃k

ij + be

)
,

αk
ij = Softmax

(
ekij

)
,

where hij is the local contextual representation of word j in sentence si and h̃k

ij is the k-th
supporting contextual representation. Wh, Wh̃ and be are learned parameters. We compute
the weighted average of the supporting representations by

H̃ij =
∑
k=1

αk
ijh̃

k

ij ,

where H̃ij denotes the contextual representation of the supporting evidence for wij.
For each word wij, its supporting evidence representation, H̃ij, provides a summary

of the other contexts where the word appears. Though this evidence is valuable to the
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prediction process, we must mitigate the influence of the supporting evidence since the
prediction should still be made primarily based on the query context. Therefore, we apply
a gating mechanism to constrain this influence and enable the model to decide the amount
of the supporting evidence that should be incorporated in the prediction process, which is
given by

rij = σ(WH̃,rH̃ij +Wh,rhij + br) ,

zij = σ(WH̃,zH̃ij +Wh,zhij + bz) ,

gij = tanh(Wh,ghij + zij ⊙ (WH̃,gH̃ij + bg)) ,

Dij = rij ⊙ hij + (1− rij)⊙ gij ,

where all W , b are learned parameters and Dij is the gated supporting evidence rep-
resentation for wij.

6.1.2 Topic-aware Corpus-level Attention

The document-level attention fails to generate supporting evidence when the name
appears only once in a single document. In such situations, we analogously select support-
ing sentences from the entire corpus. Unfortunately, different from the sentences that are
naturally topically relevant within the same documents, the supporting sentences from the
other documents may be about distinct topics or scenarios, and identical phrases may refer
to various entities with different types, as in the example in Figure 1.2.

To narrow down the search scope from the entire corpus and avoid unnecessary noise,
we introduce a topic-aware corpus-level attention which clusters the documents by topic and
carefully selects topically related sentences to use as supporting evidence.

We first apply Latent Dirichlet allocation (LDA) [124] to model the topic distribution
of each document and separate the documents into N clusters based on their topic distribu-
tions.13 As in Figure 6.2, we retrieve supporting sentences for each word, such as “Zywiec”,
from the topically related documents and employ another attention mechanism [123] to the
supporting contextual representations, ĥij = {ĥ1

ij, ĥ
2

ij, ...} (e.g., h̃xi and h̃yi in Figure 6.2).
This yields a weighted contextual representation of the corpus-level supporting evidence,
Ĥij, for each wij, which is similar to the document-level supporting evidence representation,

13N = 20 in our experiments.
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H̃ij, described in section 6.1.1. We use another gating mechanism to combine Ĥij and the
local contextual representation, hij, to obtain the corpus-level gated supporting evidence
representation, Cij, for each wij.

So far this year Zywiec, whose full name is
Zaklady Piwowarskie w Zywcu SA , has netted six
million zlotys on sales of 224 million zlotys .

So far this year Zywiec , whose full name is Zaklady Piwowarskie w Zywcu SA , has
netted six million zlotys on sales of 224 million zlotys .

Polish brewer Zywiec 's 1996 profit slump may last into next year due in part to
hefty depreciation charges , but recent high investment should help the firm defend
its 00percent market share , the firm 's chief executive said .

Van Boxmeer also said Zywiec would be boosted by its recent shedding of soft drinks
which only accounted for about three percent of the firm 's overall sales and for
which 0.0 million zlotys in provisions had already been made .

The two largest brands are Heineken and Amstel. 

The list includes Cruzcampo, Affligem and Zywiec .
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The Zywiec logo includes all of the most
important historical symbols of the brewery and
Poland itself. 

Zywiec is a town in southcentral Poland 32,242
inhabitants (as of November 2007). 

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

Corpuslevel supporting sentences

Documentlevel supporting sentences

Figure 6.2: Corpus-level Attention Architecture.

6.1.3 Tag Prediction

For each word wij of sentence si, we concatenate its local contextual representation
hij, document-level gated supporting evidence representation Dij, and corpus-level gated
supporting evidence representation Cij to obtain its final representation. This representation
is fed to another Bi-LSTM to further encode the supporting evidence and local contextual
features into an unified representation, which is given as input to an affine-CRF layer for
label prediction.

6.2 Experiments
6.2.1 Dataset

We evaluate our methods on the CoNLL-2002 and CoNLL-2003 name tagging datasets [125].
The CoNLL-2002 dataset contains name tagging annotations for Dutch (NLD) and Spanish
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(ESP), while the CoNLL-2003 dataset contains annotations for English (ENG) and Ger-
man (DEU). Both datasets have four pre-defined name types: person (PER), organization
(ORG), location (LOC) and miscellaneous (MISC).14

Code Train Dev. Test
NLD 202,931 (13,344) 37,761 (2,616) 68,994 (3,941)
ESP 264,715 (18,797) 52,923 (4,351) 51,533 (3,558)
ENG 204,567 (23,499) 51,578 (5,942) 46,666 (5,648)
DEU 207,484 (11,651) 51,645 (4,669) 52,098 (3,602)

Table 6.1: # of tokens in name tagging datasets statistics. # of names is given
in parentheses.

We select at most 4 document-level supporting sentences and 5 corpus-level supporting
sentences.15 Since the document-level attention method requires input from sets of docu-
ments, we do not evaluate the document-level attention on the CoNLL-2002 Spanish dataset
which lacks document delimiters. We still evaluate the corpus-level attention on the Span-
ish dataset by randomly splitting the dataset into documents (30 sentences per document).
Although randomly splitting the sentences does not yield perfect topic modeling clusters,
experiments show the corpus-level attention still outperforms the baseline (Section 6.2.3).

6.2.2 Experimental Setup

For word representations, we use 100-dimensional pre-trained word embeddings and 25-
dimensional randomly initialized character embeddings. We train word embeddings using
the word2vec package.16 English embeddings are trained on the English Giga-word version 4,
which is the same corpus used in [59]. Dutch, Spanish, and German embeddings are trained
on corresponding Wikipedia articles (2017-12-20 dumps). Word embeddings are fine-tuned
during training.

Table 6.2 shows our hyper-parameters. For each model with an attention, since the
Bi-LSTM encoder must encode the local, document-level, and/or corpus-level contexts, we
pre-train a Bi-LSTM CRF model for 50 epochs, add our document-level attention and/or
corpus-level attention, and then fine-tune the augmented model. Additionally, [126] report

14The miscellaneous category consists of names that do not belong to the other three categories.
15Both numbers are tuned from 1 to 10 and selected when the model performs best on the development

set.
16https://github.com/tmikolov/word2vec



48

Hyper-parameter Value
CharCNN Filter Number 25
CharCNN Filter Widths [2, 3, 4]
Lower Bi-LSTM Hidden Size 100
Lower Bi-LSTM Dropout Rate 0.5
Upper Bi-LSTM Hidden Size 100
Learning Rate 0.005
Batch Size N/A∗

Optimizer SGD [127]
∗ Each batch is a document. The batch size varies as the different document length.

Table 6.2: Hyper-parameters.

that neural models produce different results even with same hyper-parameters due to the
variances in parameter initialization. Therefore, we run each model ten times and report the
mean as well as the maximum F1 scores.

6.2.3 Performance Comparison

Table 1

0 41.5 41.5

1 59.33 59.33

2 55.62 55.62

3 58.89 58.89

4 62.8 62.8

5 62.33 62.33

6 70.39 70.39

7 69.81 69.81

8 73.25 73.25

9 75.68 75.68

10 76.12 76.12

11 73.1 73.1

12 75.1 75.1

13 77.16 77.16

14 75.8 75.8

15 80.66 80.66

16 78.11 78.11

17 78.42 78.42

18 78.38 78.38

19 79.49 79.49

20 80.51 80.51

21 77.35 77.35

22 80.81 80.81

23 79.63 79.63

24 81.69 81.69

25 80.9 80.9

26 80.71 80.71

27 80.37 80.37

28 80.2 80.2

29 80.4 80.4

30 80.46 80.46

31 82.55 82.55

32 81.55 81.55

33 82.62 82.62

34 81.28 81.28

35 82.61 82.61

36 82.26 82.26

37 81.53 81.53

38 82.36 82.36

39 82.36 82.36

40 80.71 80.71

41 83.61 83.61

42 83.93 83.93

43 83.5 83.5

44 81.97 81.97

45 83.21 83.21

46 83.76 83.76

47 82.74 82.74

48 82.96 82.96

49 84.31 84.31

50 83.78 83.78

51 81.03 80.03

52 82.57 81.57

53 83.8 82.8

54 83.87 82.87

55 84.42 83.42

56 84.19 83.19

57 84.82 83.82

58 84.36 83.36

59 84.52 83.52

60 84.83 83.83

61 85.06 84.06

62 85.27 84.27

63 84.23 83.23

64 84.1 83.1

65 85.49 84.49

66 85.07 84.07

67 85.13 84.13

68 85.37 84.37

69 85.63 84.63

70 85.18 84.18

71 85.77 84.77

72 86.22 85.22

73 86.08 85.08

74 85.29 84.29

75 85.23 84.23

76 84.83 83.83

77 85.96 84.96

78 85.25 84.25

79 85.19 84.19
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(a) Dutch

Table 1

0 67.89 66.89 68.89

1 72.29 71.29 73.29

2 74.78 73.78 75.78

3 75.74 74.74 76.74

4 78.25 77.25 79.25

5 78.05 77.05 79.05

6 79.56 78.56 80.56

7 79.83 78.83 80.83

8 80.67 79.67 81.67

9 80.1 79.1 81.1

10 81.05 80.05 82.05

11 80.76 79.76 81.76

12 81.46 80.46 82.46

13 81.09 80.09 82.09

14 81.28 80.28 82.28

15 82.37 81.37 83.37

16 82.13 81.13 83.13

17 81.63 80.63 82.63

18 82.85 81.85 83.85

19 83.94 82.94 84.94

20 82.99 81.99 83.99

21 82.98 81.98 83.98

22 83.09 82.09 84.09

23 84.09 83.09 85.09

24 83.22 82.22 84.22

25 83.43 82.43 84.43

26 83.0 82.0 84.0

27 83.77 82.77 84.77

28 84.23 83.23 85.23

29 84.71 83.71 85.71

30 84.43 83.43 85.43

31 84.91 83.91 85.91

32 83.43 82.43 84.43

33 84.63 83.63 85.63

34 84.05 83.05 85.05

35 84.16 83.16 85.16

36 84.31 83.31 85.31

37 84.83 83.83 85.83

38 84.6 83.6 85.6

39 84.76 83.76 85.76

40 84.67 83.67 85.67

41 84.8 83.8 85.8

42 84.71 83.71 85.71

43 84.83 83.83 85.83

44 84.51 83.51 85.51

45 85.16 84.16 86.16

46 84.67 83.67 85.67

47 84.69 83.69 85.69

48 85.26 84.26 86.26

49 84.97 83.97 85.97

50 84.86 83.86 85.86

51 84.14 83.14 85.14

52 85.37 84.37 85.67

53 85.59 84.59 85.89

54 85.57 84.57 85.87

55 85.47 84.47 85.77

56 85.56 84.56 85.86

57 84.94 83.94 85.24

58 85.29 84.29 85.59

59 85.53 84.53 85.83

60 85.71 84.71 86.01

61 85.34 84.34 85.64

62 85.49 84.49 85.79

63 85.63 84.63 85.93

64 85.69 84.69 85.99

65 85.47 84.47 85.77

66 85.45 84.45 85.75

67 85.72 84.72 86.02

68 85.12 84.12 85.42

69 85.53 84.53 85.83

70 85.5 84.5 85.8

71 85.48 84.48 85.78

72 85.58 84.58 85.88

73 85.66 84.66 85.96

74 85.76 84.76 86.06

75 85.56 84.56 85.86

76 85.47 84.47 85.77

77 85.03 84.03 85.33

78 85.64 84.64 85.94

79 85.33 84.33 85.63

80 85.31 84.31 85.61

81 85.11 84.11 85.41

82 85.36 84.36 85.66

83 85.37 84.37 85.67
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(b) Spanish

Table 1

f1 raw_f1
0 82.81 82.81

1 86.13 86.13

2 87.64 87.64

3 88.57 88.57

4 89.0 89.0

5 89.35 89.35

6 89.2 89.2

7 89.16 89.16

8 89.53 89.53

9 89.82 89.82

10 90.19 90.19

11 90.07 90.07

12 90.3 90.3

13 90.25 90.25

14 90.24 90.24

15 90.28 90.28

16 90.67 90.67

17 90.58 90.58

18 90.5 90.5

19 90.59 90.59

20 90.52 90.52

21 90.68 90.68

22 90.67 90.67

23 90.72 90.72

24 90.64 90.64

25 90.77 90.77

26 90.79 90.79

27 90.67 90.67

28 90.79 90.79

29 90.73 90.73

30 90.77 90.77

31 90.93 90.93

32 90.87 90.87

33 90.78 90.78

34 90.72 90.72

35 90.71 90.71

36 90.78 90.78

37 90.8 90.8

38 90.83 90.83

39 90.87 90.87

40 90.82 90.82

41 90.89 90.89

42 90.76 90.76

43 90.88 90.88

44 90.86 90.86

45 90.88 90.88

46 90.89 90.89

47 90.75 90.75

48 90.87 90.87

49 90.92 90.92

50 90.58 90.48

51 90.98 90.88

52 90.95 90.85

53 90.96 90.86

54 90.96 90.86

55 91.22 91.12

56 91.11 91.01

57 91.15 91.05

58 90.8 90.7

59 91.06 90.96

60 91.03 90.93

61 91.44 91.34

62 91.14 91.04

63 91.08 90.98

64 91.12 91.02

65 91.04 90.94

66 91.08 90.98

67 91.23 91.13

68 91.05 90.95

69 91.1 91.0

70 91.05 90.95

71 91.19 91.09

72 91.26 91.16

73 91.15 91.05

74 91.24 91.14

75 91.23 91.13

76 91.17 91.07

77 91.23 91.13

F1
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(c) English

Table 1

0 60.67 60.67

1 66.07 66.07

2 68.82 68.82

3 70.77 70.77

4 71.71 71.71

5 72.91 72.91

6 73.36 73.36

7 74.49 74.49

8 74.95 74.95

9 74.33 74.33

10 75.19 75.19

11 75.37 75.37

12 75.81 75.81

13 76.51 76.51

14 76.3 76.3

15 76.57 76.57

16 76.73 76.73

17 76.86 76.86

18 76.68 76.68

19 77.18 77.18

20 77.19 77.19

21 77.38 77.38

22 76.97 76.97

23 77.25 77.25

24 77.19 77.19

25 77.43 77.43

26 77.56 77.56

27 77.85 77.85

28 77.82 77.82

29 77.46 77.46

30 77.75 77.75

31 77.81 77.81

32 77.72 77.72

33 77.71 77.71

34 77.47 77.47

35 77.84 77.84

36 77.89 77.89

37 77.57 77.57

38 77.84 77.84

39 78.02 78.02

40 77.85 77.85

41 77.83 77.83

42 77.89 77.89

43 77.89 77.89

44 78.04 78.04

45 77.73 77.73

46 77.77 77.77

47 77.78 77.78

48 77.95 77.95

49 77.86 77.86

50 77.93 77.93

51 77.66 77.66

52 77.69 77.79 77.49

53 77.66 77.76 77.46

54 78.1 78.2 77.9

55 78.2 78.3 78.0

56 77.97 78.07 77.77

57 78.36 78.46 78.16

58 77.89 77.99 77.69

59 78.66 78.76 78.46

60 78.61 78.71 78.41

61 78.64 78.74 78.44

62 77.59 77.69 77.39

63 77.96 78.06 77.76

64 78.37 78.47 78.17

65 78.14 78.24 77.94

66 77.98 78.08 77.78

67 78.2 78.3 78.0

68 78.51 78.61 78.31

69 78.55 78.65 78.35

70 78.35 78.45 78.15

71 77.85 77.95 77.65

72 78.25 78.35 78.05

73 78.05 78.15 77.85

74 78.51 78.61 78.31

75 78.22 78.32 78.02

76 78.32 78.42 78.12

77 78.26 78.36 78.06

78 78.49 78.59 78.29

79 78.15 78.25 77.95

80 78.24 78.34 78.04

81 78.26 78.36 78.06

82 78.34 78.44 78.14

83 78.25 78.35 78.05

84 78.01 78.11 77.81

85 77.99 78.09 77.79

86 78 78.1 77.8
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(d) German

Figure 6.3: Average F1 score for each epoch of the ten runs of our model with
both document-level and corpus-level attentions. Epochs 1-50 are
the pre-training phase and 51-100 are the fine-tuning phase.

We compare our methods to three categories of baseline name tagging methods:
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• Vanilla Name Tagging Without any additional resources and supervision, the cur-
rent state-of-the-art name tagging model is the Bi-LSTM-CRF network reported by [59]
and [60], whose difference lies in using a LSTM or CNN to encode characters. Our
methods fall in this category.

• Multi-task Learning [129, 63] apply multi-task learning to boost name tagging perfor-
mance by introducing additional annotations from related tasks, such as entity linking
and POS tagging labels.

• Join-learning with Language Model [30, 61, 29] leverage a pre-trained language
model on a large external corpus to enhance the semantic representations of words in the
local corpus. [29] achieves a remarkably high score on the CoNLL-2003 English dataset
using a giant language model pre-trained on a 1 Billion Word Benchmark [130].

Table 6.3 presents the performance comparison between the baseline, the aforemen-
tioned state-of-the-art methods, and our proposed methods. Adding only the document-level
attention offers a F1 gain of between 0.37% and 1.25% on Dutch, English, and German. Sim-
ilarly, the addition of the corpus-level attention yields a F1 gain between 0.46% to 1.08%
across all four languages. The model with both attentions outperforms our baseline method
by 1.60%, 0.56%, and 0.79% on Dutch, English, and German, respectively.

By incorporating the document-level and corpus-level attentions, we achieve state-of-
the-art performance on the Dutch (NLD), Spanish (ESP) and German (DEU) datasets. For
English, our methods outperform the state-of-the-art methods in the “Vanilla Name Tagging”
category. Since the document-level and corpus-level attentions introduce redundant and
topically related information, our models are compatible with the language model enhanced
approaches. It is interesting to explore the integration of these two methods, but we leave
this to future explorations. Figure 6.3 presents, for each language, the learning curves of
the full models (i.e., with both document-level and corpus-level attentions). The learning
curve is computed by averaging the F1 scores of the ten runs at each epoch. We first pre-
train a baseline Bi-LSTM CRF model from epoch 1 to 50. Then, starting at epoch 51, we
incorporate the document-level and corpus-level attentions to fine-tune the entire model. As
shown in Figure 6.3, when adding the attentions at epoch 51, the F1 score drops significantly
as new parameters are introduced to the model. The model gradually adapts to the new
information, the F1 score rises, and the full model eventually outperforms the pre-trained
model. The learning curves strongly prove the effectiveness of our proposed methods.
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6.2.4 Qualitative Analysis

#1 Dutch
Baseline [B-LOC Granada] overwoog vervolgens een bod op Carlton uit te brengen, maar daar ziet het 

concern nu van af.
Granada then considered issuing a bid for Carlton, but the concern now sees it.

Our model [B-ORG Granada] overwoog vervolgens een bod op Carlton uit te brengen, maar daar ziet het 
concern nu van af.

D-lvl sentences [B-ORG Granada] [I-ORG Media] neemt belangen in United News.
Granada Media takes interests in United News.

C-lvl sentences Het Britse concern [B-ORG Granada] [I-ORG Media] heeft voor 1,75 miljard pond sterling (111 
miljard Belgische frank) aandelen gekocht van United News Media.
The British group Granada Media has bought shares of GBP 1.75 trillion (111 billion Belgian 
francs) from United News Media.

#2 English
Baseline Initially Poland offered up to 75 percent of Ruch but in March [ORG Kaczmarek] cancelled the 

tender and offered a minority stake with an option to increase the equity.
Our model Initially Poland offered up to 75 percent of Ruch but in March [PER Kaczmarek] cancelled the 

tender and offered a minority stake with an option to increase the equity.
D-lvl sentences [PER Kaczmarek] said in May he was unhappy that only one investor ended up bidding for Ruch.  
#3 German
Baseline Diese Diskussion werde ausschlaggebend sein für die Stellungnahme der Grünen in dieser Frage.

This discussion will be decisive for the opinion of the Greens on this question.
Our model Diese Diskussion werde ausschlaggebend sein für die Stellungnahme der [B-ORG Grünen] in dieser 

Frage.
C-lvl sentences Auch das Mitglied des Bundesvorstandes der [B-ORG Grünen], Helmut Lippelt, sprach sich für ein 

Berufsheer au.
Helmut Lippelt, a member of the Federal Executive of the Greens, also called for a 
professional army.

#4 Negative Example
Reference [B-LOC Indianapolis] 1996-12-06
Our model [B-ORG Indianapolis] 1996-12-06
D-lvl sentence The injury-plagued [B-ORG Indianapolis] [I-ORG Colts] lost another quarterback on Thursday but 

last year's AFC finalists rallied together to shoot down the Philadelphia Eagles 37-10 in a 
showdown of playoff contenders.

* D-lvl sentences: document-level supporting sentences.
* C-lvl sentences: corpus-level supporting sentences.

Figure 6.4: Comparison of name tagging results between the baseline and our
methods.

Table 6.4 compares the name tagging results from the baseline model and our best
models. All examples are selected from development set.

In the Dutch example, “Granada” is the name of a city in Spain, but also the short
name of “Granada Media”. Without ORG related context, “Granada” is mistakenly tagged
as LOC by the baseline model. However, the document-level and corpus-level supporting
evidence retrieved by our method contains the ORG name “Granada Media”, which strongly
indicates “Granada” to be an ORG in the query sentence. By adding the document-level
and corpus-level attentions, our model successfully tags “Granada” as ORG.

In example 2, the OOV word “Kaczmarek” is tagged as ORG in the baseline output.
In the retrieved document-level supporting sentences, PER related contextual information,
such as the pronoun “he”, indicates “Kaczmarek” to be a PER. Our model correctly tags
“Kaczmarek” as PER with the document-level attention.
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In the German example, “Grünen” (Greens) is an OOV word in the training set. The
character embedding captures the semantic meaning of the stem “Grün” (Green) which is a
common non-name word, so the baseline model tags “Grünen” as O (outside of a name). In
contrast, our model makes the correct prediction by incorporating the corpus-level attention
because in the related sentence from the corpus “Bundesvorstandes der Grünen” (Federal
Executive of the Greens) indicates “Grünen” to be a company name.
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Code Model F1 (%)
Gillick et al., 2015 [128] reported 82.84
Lample et al., 2016 [59] reported 81.74

NLD

Yang et al., 2017 [63] reported 85.19

Our Baseline mean 85.43
max 85.80

Doc-lvl Attention mean 86.82
max 87.05

Corpus-lvl Attention mean 86.41
max 86.88

Both
mean 87.14
max 87.40
∆ +1.60

ESP

Gillick et al., 2015 [128] reported 82.95
Lample et al., 2016 [59] reported 85.75
Yang et al., 2017 [63] reported 85.77

Our Baseline mean 85.33
max 85.51

Corpus-lvl Attention mean 85.77
max 86.01
∆ +0.50

Luo et al., 2015 [129] reported 91.20

ENG

Lample et al., 2016 [59] reported 90.94
Ma and Hovy, 2016 [60] reported 91.21
Liu et al., 2017 [61] reported 91.35
Peters et al., 2017 [30] reported 91.93
Peters et al., 2018[29] reported 92.22

Our Baseline mean 90.97
max 91.23

Doc-lvl Attention mean 91.43
max 91.60

Corpus-lvl Attention mean 91.41
max 91.71

Both mean 91.64
max 91.81
∆ +0.58

Gillick et al., 2015 [128] reported 76.22

DEU

Lample et al., 2016 [59] reported 78.76

Our Baseline mean 78.15
max 78.42

Doc-lvl Attention mean 78.90
max 79.19

Corpus-lvl Attention mean 78.53
max 78.88

Both mean 78.83
max 79.21
∆ +0.79

Table 6.3: Performance of our methods versus the baseline and state-of-the-art
models.



Chapter 7
Cross-lingual Language Model for Name Tagging

In this chapter, we aim to address the problem of training an LL name tagger without
using any LL labeled data. Our proposed approaches are based on the following hypotheses
introduced in section 1.3:

Distributed word embeddings/contextualized word embeddings of HL and
LL can be projected into a shared space, so that machine learning mod-
els trained on HL embeddings/contextualized embeddings can produce
satisfying performance on LL.

We first present our baseline method where we train a cross-lingual name tagger using cross-
lingual word embeddings, and then we propose a new method to unsupervisedly pre-train
cross-lingual language model for HL and LL via monolingual corpora. In the experiment
section, we show cross-lingual name tagger trained with cross-lingual language model signif-
icantly outperforms cross-lingual word embeddings.

7.1 Approach Overview
In this section, We present the details of training cross-lingual word embeddings and

cross-lingual language model, as well as how we use these embeddings to develop a cross-
lingual name tagger.

7.1.1 Cross-lingual Word Embeddings

First we use Fasttext [131] to pre-train word embeddings on HL and LL Wikipedia
corpus. Then we apply MUSE [26] toolkit to unsupervisedly align HL and LL monolingual
embeddings to generate the HL-LL cross-lingual word embeddings WXL = WHL

∪
WLL,

where WHL is the HL portions of the cross-lingual word embeddings, and WLL is the LL
portions.

We choose the widely used Bi-LSTM CRF as our name tagging architecture. Given
HL labeled training data, we train a HL name tagger by initializing its word embeddings
as WHL. We freeze word embeddings during training. When evaluating on LL test set, we
encode LL sentence with WLL and then feed them into the HL name tagger.
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In addition to the unsupervised approach (HL labeled data is considered as existing
resources), when a small amount of LL labeled data is available, we propose a new framework
to utilize both HL and LL labeled data. Similarly, we first train a Bi-LSTM CRF HL name
tagger, and then we finetune the name tagger on the LL labeled training data. As character
representations are effective for name tagging [59, 60], we concatenate a randomly initial-
ized CNN character representation to generate the word representation during finetuning.
Similarly, we freeze word embedding update during finetuning.

7.1.2 Cross-lingual Language Model

Contextualized word embedding pre-training has shown to be effective for improving
many NLP tasks [27, 28, 29, 30, 31, 32]. [27] completely remove pre-trained word embed-
dings and achieve the state-of-the-art performance by only feeding a pre-trained transformer
language model to a Bi-LSTM name tagger. This somewhat proves pre-trained language
model can produce better word representations over word embeddings.

Generally, training cross-lingual language model consists of two phases: 1) pre-train
HL and LL encoder and decoder, and 2) apply “back-translation” to constrain the latent
representations produced by the encoder to be shared across HL and LL. We iteratively
repeat these two steps for each batch of training instances.
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Word embeddings

Position Embeddings

in <EOS> Идет 

Shared Transformer EncoderTransformer layer

Label

<SOS> дождь

Source Language Decoder Target Language DecoderDecoder layer

. <EOS><SOS>

(It's)

(raining)

I live in NYSource sentence

Shared Transformer Encoder

Noisy target sentence

Target Language Decoder

<SOS>

Я <EOS>живу в НьюЙорке<SOS>
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We <EOS>live at NY<SOS>Noisy source sentence

I <EOS>live in NY<SOS>HL sentence label

Figure 7.1: An example of training HL and LL language model.

Phase 1 - Figure 7.1 presents the architecture to train HL and LL language model.
Following [27], we use Masked Language Modeling where we first randomly sample 15%
of the words from the sentence, and then replace 80% of the sampled words with a mask
token “[MASK]”, 10% of them with a random token, and keep the rest 10% unchanged.
The purpose of keeping 10% of words unchanged is to bias the representation towards the
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actual observed word [27]. The encoder is shared to take the most advantage of overlapped
vocabulary between HL and LL, but the decoders are independent from each other.

Phase 2 - [34, 132] successfully use “back-translation” to unsupervisedly train a machine
translation system and achieve remarkable performance, given no parallel data provided.
Their decoder is an attentive RNN that produces various length sentence, while our decoder
is a feed forward network with a softmax layer that predicts the masked word for each input
token. Our decoder is more appropriate for name tagging task.
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Figure 7.2: An example of back-translation.

Figure 7.2 shows an example of “back-translation” for English and Russian. Given an
English sentence “I live in NY .”, the latent representations produced by the encoder are
fed into a target language (Russian in this case) decoder which outputs a noisy Russian
translation. Then we use the encoder again to generate latent representations of the Russian
translation. A source language (English in this case) decoder decodes the latent represen-
tations back to English. As these two latent representations represent the same meaning,
we use the original English sentence “I live in NY .” as labels of the source language de-
coder output. For parameter updates, we freeze the encoder and word embeddings, and only
change source and tagert language decoders.

We simply add a feed-forward network and softmax layer on top of the encoder, and
train the model on HL name tagging annotations. The encoder parameters are fixed during
training. When applying to LL, we feed the encoder with LL words.

Byte Pair Encoding (BPE) - [27, 133] report subword encoding significantly improve
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the quality of language model pre-training and machine translation. We use fastBPE17 to
pre-process HL and LL monolingual data. The subword vocabularies of HL and LL are
shared during training.

7.2 Experiments
In this section, we present the dataset, training details, and cross-lingual name tag-

ging results on English-Russian and English-Spanish language pairs using cross-lingual word
embeddings and language model.

7.2.1 Dataset

Language Train Dev Test
English 14,987 N/A N/A
Russian 4,755 1,953 1,953
Spanish 8,323 1,914 1,516

Table 7.1: # of sentences in name tagging datasets statistics.

In our experiments, we consider English as HL, and Russian and Spanish as LL. Span-
ish is a language close to English because its vocabulary and character set highly overlap
with English, while Russian is a distant language compared to English due to its distinct
vocabulary and characters. We use English CoNLL-2003 [125] for name tagger training, and
evaluate it on Russian test set from DARPA LORELEI program (LDC2016E95) and Spanish
CoNLL-2002 test set. For comparison, we use the name taggers trained on LL training set
as the upper bound of our cross-lingual name taggers. Table 7.1 shows data statistics. To
pre-train cross-lingual word embeddings and language model, we use English, Russian and
Spanish 20190201 Wikipedia dump.

7.2.2 Training Details

Table 7.2 shows our hyper-parameters and training setup. We implement our cross-
lingual language model in Pytorch, and train it on a 5 Tesla P100 GPUs.

17https://github.com/glample/fastBPE
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Hyper-parameter Value
Cross-lingual Word Embeddings:
Word Embedding Size 300
Bi-LSTM Hidden Size 300
Finetuning CharCNN Filter Number 25
Finetuning CharCNN Filter Widths [2, 3, 4]
Optimizer Adam [134]
Learning Rate 0.005
Batch Size 128
Cross-lingual Language Model:
Transformer Hidden Size 512
Transformer Heads 8
Transformer Layers 3
Shared BPE units 40,000
Optimizer Adam
Learning Rate 0.001
Batch Size 16

Table 7.2: Hyper-parameters and training setup.

7.2.3 Model Comparison

In Table 7.3, we evaluate name taggers trained with cross-lingual word embeddings
and cross-lingual language model. Without any Russian/Spanish labeled data, the English
name tagger trained on cross-lingual word embeddings achieved 37.81% F-1 on Russian, and
50.13% on Spanish. As capturing extra contextual information, cross-lingual language model
outperforms cross-lingual word embeddings and achieves 45.79% and 58.28% on Russian and
Spanish respectively.

Training Lang. Eval Lang. Model F-1 (%)
Russian Russian Bi-LSTM + Char + CRF 63.77
English Russian Directly Transferring* 2.31
English Russian Cross-lingual Word Embeddings 37.81
English Russian Cross-lingual Language Model 45.79
Spanish Spanish Bi-LSTM + Char + CRF 83.31
English Spanish Directly Transferring* 33.31
English Spanish Cross-lingual Word Embeddings 50.13
English Spanish Cross-lingual Language Model 58.28

∗ Directly Transferring applies HL name tagger on LL sentence without any cross-lingual
embeddings.

Table 7.3: Model comparisons for English-Russian and English-Spanish.

Moreover, when LL annotations are available, we initialize an LL name tagger using
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the parameters of the cross-lingual name tagger that is pre-trained on English annotations,
and then finetune it on the LL labeled data. We hypothesize that when LL annotations
are insufficient, incorporating pre-trained HL name tagger brings external information and
thus improves LL name tagging performance. To investigate the impact of pre-training
HL name tagger, we split LL training data into 10 portions and evaluate our method using
different percentage of LL training data. 7.3a and 7.3b present two learning curves for Russian
and Spanish. The finetuned models achieve 65.17% and 83.61% on Russian and Spanish,
which outperforms our baselines. The Russian result is more impressive than Spanish as
the Russian labeled data (4,755 sentences) is relatively smaller than Spanish labeled data
(8,323). Similarly, the cross-lingual language model performs better than cross-lingual word
embeddings.

(a) Russian (b) Spanish

Figure 7.3: Learning curve of finetuning pre-trained HL name tagger on LL
annotations.



Chapter 8
System Demo

8.1 System Overview
Our cross-lingual entity extraction, linking and localization system is capable of ex-

tracting named entities from unstructured text in any of 282 Wikipedia languages, trans-
lating them into English, and linking them to English Knowledge Bases (Wikipedia and
Geonames). This system then produces visualizations of the results such as heatmaps, and
thus it can be used by an English speaker for monitoring disasters and coordinating rescue
and recovery efforts reported from incident regions in low-resource languages. In this chap-
ter, we will present a comprehensive overview of the system components (Section 8.2 and
Section 8.3), APIs (Section 8.4), interface18(Section 8.5), and visualization19 (Section 8.6).

APIs Description
/status Retrieve the current server status, including supported languages,

language identifiers, and the state (offline, online, or pending) of
each model.

/status/{identifier} Retrieve the current status of a given language.
/entity_discovery_and_linking/
{identifier}

Main entry of the EDL system. Take input in either plain text or
*.ltf format, tag names that are PER, ORG or LOC/GPE, and
link them to Wikipedia.

/name_transliteration/
{identifier}

Transliterate a name to Latin script.

/entity_linking/{identifier} Query based entity linking. Link each mention to KBs.
/entity_linking_amr English entity linking for Abstract Meaning Representation (AMR)

style input [135]. AMR [92] is a structured semantic representa-
tion scheme. The rich semantic knowledge in AMR boosts linking
performance.

/localize/{identifier} Localize a LOC/GPE name based on GeoNames database.

Table 8.1: Runtime APIs description.

8.2 Entity Extraction
Given a text document as input, the entity extraction component identifies entity name

mentions and classifies them into pre-defined types: Person (PER), Geo-political Entity
18https://elisa-ie.github.io
19https://elisa-ie.github.io/heatmap
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APIs Description
/status An alias of /status
/status/{identifier} Query the current status of a model being trained.
/train/{identifier} Train a new name tagging model for a language. A model id is automatically

generated and returned based on model name, and time stamp.

Table 8.2: Training APIs description.

Figure 8.1: Cross-lingual Entity Extraction and Linking Interface

Figure 8.2: Cross-lingual Entity Extraction and Linking Testing Result
Visualization

(GPE), Organization (ORG) and Location (LOC). We consider name tagging as a sequence
labeling problem, to tag each token in a sentence as the Beginning (B), Inside (I) or Outside
(O) of an entity mention with a certain type. Our model is based on a bi-directional long
short-term memory (LSTM) networks with a Conditional Random Fields (CRFs) layer [102].
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Figure 8.3: Heatmap Visualization

It is challenging to perform entity extraction across a massive variety of languages because
most languages don’t have sufficient data to train a machine learning model. To tackle the
low-resource challenge, we developed creative methods of deriving noisy training data from
Wikipedia [85], exploiting non-traditional language-universal resources [37] and cross-lingual
transfer learning [136].

8.3 Entity Linking and Localization
After we extract entity mentions, we link GPE and LOC mentions to GeoNames,20

and PER and ORG mentions to Wikipedia.21 We adopt the name translation approach
described in [85] to translate each tagged entity mention into English, then we apply an
unsupervised collective inference approach [135] to link each translated mention to the tar-
get KB. Figure 8.2 shows an example output of a Hausa document. The extracted entity
mentions “Stephane Dujarric” and “birnin Bentiu” are linked to their corresponding entries
in Wikipedia and GeoNames respectively.

Compared to traditional entity linking, the unique challenge of linking to GeoNames
is that it is very scarce, without rich linked structures or text descriptions. Only 500k out of

20http://www.geonames.org
21https://www.wikipedia.org
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Language F1 (%) Language F1 (%)
Arabic 51.9 Bengali 74.8
Chechen 58.9 Persian 58.4
Hausa 70.2 Hungarian 60.2
Oromo 81.3 Russian 63.7
Somali 67.6 Tamil 65.9
Thai 69.8 Tigrinya 73.2
Tagalog 78.7 Turkish 74.4
Uyghur 72.3 Uzbek 71.8
Vietnamese 68.5 Yoruba 50.1

Table 8.3: Name Tagging Performance on Low-Resource Languages

4.7 million entities in Wikipedia are linked to GeoNames. Therefore, we associate mentions
with entities in the KBs in a collective manner, based on salience, similarity and coherence
measures [135]. We calculate topic-sensitive PageRank scores for 500k overlapping entities
between GeoNames and Wikipedia as their salience scores. Then we construct knowledge
networks from source language texts, where each node represents a entity mention, and each
link represents a sentence-level co-occurrence relation. If two mentions cooccur in the same
sentence, we prefer their entity candidates in the GeoNames to share an administrative code
and type, or be geographically close in the world, as measured in terms of latitude and
longitude.

Table 8.3 shows the performance of our system on some representative low-resource lan-
guages for which we have ground-truth annotations from the DARPA LORELEI22 programs,
prepared by the Linguistic Data Consortium.

8.4 Training and Testing APIs
In this section, we introduce our back-end APIs. The back-end is a set of RESTful

APIs built with Python Flask,23 which is a light weight framework that includes template
rendering and server hosting capabilities. We use Swagger for documentation management.
Besides the on-line hosted APIs, we also publish our Docker copy24 at Dockerhub for software
distribution.

In general, we categorize the APIs into two sections: RUN and TRAIN. The RUN
22https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
23http://flask.pocoo.org
24https://hub.docker.com/r/elisarpi/elisa-ie/
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section is responsible for running the pre-trained models for 282 languages, and the TRAIN
section provides a re-training function for users who want to train their own customized
name tagging models using their own datasets. We also published our training and test data
sets, as well as resources related to at morphology analysis and name translation at: https:

//elisa-ie.github.io/wikiann. Table 8.1 and Table 8.2 present the detailed functionality
and usages of the APIs of these two sections. Besides the core components as described in
Section 8.2 and Section 8.3, we also provide the APIs of additional components, including a
re-trainable name transliteration component [137] and a universal name and word translation
component based on word alignment derived from cross-lingual Wikipedia links [85]. More
detailed usages and examples can be found in our Swagger25 documentation: https://

elisa-ie.github.io/api.

8.5 Testing Interface
Figure 8.1 shows the test interface, where a user can select one of the 282 languages,

enter a text or select an example document, and run the system. Figure 8.2 shows an output
example. In addition to the entity extraction and linking results, we also display the top 5
images for each entity retrieved from Google Image Search.26 In this way even when a user
cannot read a document in a low-resource language, s/he will obtain a high-level summary
of entities involved in the document.

8.6 Heatmap Visualization
Using disaster monitoring as a use case, we detect the following ten topics from the

input multi-lingual data based on translating 117 English disaster keywords via PanLex:27 (1)
water supply, (2) food supply, (3) medical assistance, (4) terrorism or other extreme violence,
(5) utilities, energy or sanitation, (6) evacuation, (7) shelter, (8) search and rescue, (9) civil
unrest or wide-spread crime, and (10) infrastructure, as defined in the NIST LoreHLT2017
Situation Frame detection task.28 If a sentence includes one of these topics and also a location
or geo-political entity, we will visualize the entity on a world heatmap using Mapbox29 based

25https://swagger.io
26https://images.google.com
27http://panlex.org
28https://www.nist.gov/itl/iad/mig/lorehlt-evaluations
29https://www.mapbox.com
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on its coordinates in the GeoNames database obtained from the entity linker. We also
show the entire context sentence and its English translation produced from our state-of-the-
art Machine Translation system for low-resource languages [136]. Figure 8.3 illustrates an
example of the visualized heatmap.

We use different colors and icons to stand for different languages and frame topics
respectively (e.g., the bread icon represents “food supply”). Users can also specify the
language or frame topic or both to filter out irrelevant results on the map. By clicking
an icon, its context sentence will be displayed in a pop-up with automatic translation and
highlighted mentions and keywords. We provide various map styles (light, dark, satellite,
and streets) for different needs, as shown in Figure 8.4.

Figure 8.4: Different Map Styles



Chapter 9
Conclusions and Future Work

9.1 Conclusions
In this thesis, we first presented readers an overview of information extraction and

name tagging, as well as a brief introduction of low-resource languages (LL). To address the
challenges posed by name tagging for low-resource languages, we formulated four hypotheses
and propose concrete solutions to justify each hypothesis. At the end, we provided a system
demo that makes our research outcomes publicly available.

In Chapter 2, we walked through the history of name tagging, which dates back to 1995.
At the time, Message Understanding Conference (MUC-6) added the task of recognition of
named entities, and since then, name tagging became an active area of research for past
twenty years. We started from introducing traditional name tagging approaches, such as
rule-based systems, Hidden Markov Model (HMM), Support Vector Machine (SVM) and
Conditional Random Field (CRF). Then we presented neural network based approaches
that achieved remarkable performance in recent years. At last, we showed the bottleneck of
these methods to low-resource language name tagging.

In Chapter 3, we presented solutions to our first hypothesis which assumes that noisy
low-resource language annotations created by non-native speakers or automatically distilled
from existing resources can provide weak supervision to machine learning models. We in-
troduced 1) “Chinese Room” which is a annotation platform for non-name speakers, and 2)
name projection through parallel data.

In Chapter 4 and Chapter 5, we justified our second hypothesis: language univer-
sal features can mitigate the impact of noise in annotations, and provide robustness and
generalization to a weakly supervised machine learning model. In situations where LL la-
beled data are insufficient and noisy, traditional machine learning methods suffer from huge
performance decreases. We proposed a neural framework that can incorporates many non-
traditional language universal resources that are readily available but rarely explored in
the NLP community. We encoded such various types of non-traditional linguistic resources
as features into a supervised DNN name tagger. Our proposed architecture significantly
outperform baseline methods.
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In Chapter 6, we observed that by only relying on local contextual information, the
current DNN models perform poorly when the local context is ambiguous or limited. To
address this problem, we formulated the third hypothesis: recognizing names not only re-
lies on the context of the sentence, but also the context of the article, sometime even the
whole corpus. We proposed a new framework to improve the DNN name tagger by utiliz-
ing local and global (document-level and corpus-level) contextual information. We retrieved
the document-level context from other sentences within the same document and corpus-
level context from sentences in other documents. The proposed model learns to incorporate
document-level and corpus-level contextual information alongside local contextual informa-
tion via global attention, which dynamically weights their respective contextual information,
and gating mechanisms, which determine the influence of this information.

In Chapter 7, we investigated the problem of training LL name taggers without using
any LL labeled data. Our proposed approaches justified the forth hypothesis that distribu-
tional word embeddings/contextualized word embeddings of HL and LL can be projected into
a shared space, so that machine learning models trained on HL embeddings/contextualized
embeddings can produce satisfying performance on LL. We discussed the advantages of pre-
trained language model over word embeddings. In experiments, we use MUSE which a word
embedding alignment tool [26] to generate cross-lingual word embeddings. And we proposed
a new architecture to pre-train cross-lingual language models. At last, we evaluated cross-
lingual name taggers trained with cross-lingual word embeddings and cross-lingual language
model, and showed that cross-lingual language model achieves better performance on name
tagging task.

In Chapter 8, we fused our research outcomes together and introduced a publicly
available system that is capable of extracting named entities from unstructured text in any
of 282 Wikipedia languages, translating them into English, and linking them to English
Knowledge Bases (Wikipedia and Geonames). The APIs have been used by many third
party organizations.

All together, we are really excited about the progress that has been made in this field
in recent years and have been glad to be able to contribute to this field.
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9.2 Future Work
We believe that there is still a long way to go towards fully unsupervised low-resource

name tagging, and we are still facing enormous challenges and a lot of questions that we
need to address in the future. Here we present several research directions and some potential
solutions from our perspective.

9.2.1 Enhanced Cross-lingual Contextualized Word Embedding

In the thesis, we show that cross-lingual contextualized word embedding significantly
improves language transferring capability of name tagging, due to its awareness of context
information. However, there is still a gap between the cross-lingual name tagger and the
name tagger that is trained on low-resource language annotations. We show some limitations
of the current method, and to bridge the gap, we point out some future directions.

• The first limitation is “word order shift” where words in phrases of two languages
are in different order due to inconsistent syntax, e.g. “University of Washington” is
“华盛顿(Washington ) ⼤学(University)” in Chinese. To address this problem, other
than the method we used in previous experiments where we removed B and I tags
from BIO schema, we propose to train cross-lingual contextualized word embedding
based on span representation instead of word representation. By doing this, we change
from training a model for word-for-word translation to phrase-for-phrase translation.
[138, 139] show span representations are effective for many tasks.

• Training contextualized word embedding is computationally expensive. [30, 29, 27]
compare models with different sizes of parameters, from a Bi-LSMT encoder of 512 di-
mension to multi-layer transformer encoder with 340 million parameters. Larger size of
parameters significantly improve representation quality and yield better performance
on various NLP tasks. Therefore, it is important to optimize the space complexity and
time complexity when training neural models so that we can apply larger models and
obtain better representations. Potential optimization methods include: 1) changing
computation precision from floating point 32 (default in most deep learning frame-
works) to floating point 16 to save GPU memory and speed up training, 2) replace all
general softmax layer with hierarchical softmax [140], and 3) negetive sample [141] to
reduce candidate sizes.
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• Current method to train cross-lingual contextualized word embedding is purely unsu-
pervised and cannot utilize human annotations when available. [86] shows that adding
a small amount of supervision into an unsupervised model significantly improves model
performance. We propose to use parallel data to finetune an unsupervisedly pre-trained
contextualized word embedding. [142] shares similar idea with us but uses a different
method.

With better quality cross-lingual contextualized word embedding, a name tagger trained
on HL annotations can better understand LL and thus achieves improved performance.

9.2.2 Unsupervised Cross-lingual Information Extraction

Training cross-lingual contextualized word embedding essentially learns how to trans-
late words from one language to another. It is not limited to the task of name tagging,
but can also be applied to many other cross-lingual NLP tasks, such as event extraction
and relation extraction. With cross-lingual contextualized word embedding, we can build
a comprehensive low-resource language information extraction framework by transferring
knowledge from HL to LL. It only needs existing HL training data and requires no LL
annotations.

Event Extraction is one of the core Information Extraction (IE) tasks that aims to
identify event triggers and arguments from unstructured texts and classify them into prede-
fined categories. For example, given a sentence “Tim Cook joined Apple in 1998.”, a event
extraction system should discover 1) “joined” as an event trigger which is a word or phrase
that clearly presents the occurrence of an event, 2) “Tim Cook” and “Apple” as PERSON
and ORGANIZATION event arguments of the event trigger “joined”, and 3) assign the
whole sentence a pre-defined event type Personnel.Start-POSITION. Event trigger and
event argument labeling are usually considered as sequence tagging problem, which is simi-
lar to name tagging. We can use cross-lingual contextualized word embedding in the same
way as name tagging to build an LL event trigger and argument tagger from HL resources.
Event type prediction is usually considered as a multi-label classification problem, where
the input to the classifier is word embedding, followed by convolutional networks to extract
features and predict labels. We can simply replace the word embedding by cross-lingual
word embedding or contextualized embedding during training, and obtain a cross-lingual
event type classifier.
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As what we mentioned so far, to grant cross-lingual capability to a machine learning
model, we replace the word embedding in neural models with cross-lingual contextualized
word embedding and train it on HL annotations, and then we are able to directly evaluate
them on LL. This procedure is applicable to relation extraction as well. Relation extraction
aims to predict a pre-defined relation type between two given entity mentions for a sentence.
For example, in “Steve Jobs is the co-founder of Apple.”, the pre-defined relation between
entity mentions “Steve Jobs” and “Apple” is Org-Affiliation-Founder. A typical approach
for relation extraction is CNN based supervised classifier. We similarly replace the word
embedding of the model by cross-lingual contextualized embedding during training, and
train the cross-lingual relation classifier on HL annotations.

9.2.3 Joint Information Extraction

In the realm of information extraction, inter-dependencies and constraints across mul-
tiple tasks and multiple languages are pervasive. One task can benefit from interactions
among multiple relevant tasks, such as name tagging and entity linking. Entity linking is
a task of linking a name mention to a unique entry in a Knowledge Base (KB). A joint
approach of name tagging and entity linking can significantly eliminate ambiguities for both
tasks, for example, if a tagged phrase has no entry in KB, then it’s not likely to be a name,
and if a name is a person, then it’s likely to be linked to a person entry in KB.

Joint information extraction has been extensively studied in traditional feature based
machine learning approaches. However, in the neural network “era”, although there are
several attempts that have been made to jointly learning across multiple tasks, we believe
that the way to jointly model multiple tasks and consider all possible inter-dependencies is
still far from perfect.

9.3 Final Remark
As the final remark, this thesis, by standing upon the shoulders of previous research,

studied the topic of name tagging for low-resource languages, and provided a different angle
to contribute to the task. We hope the observations, hypotheses, approaches and experiment
results of this thesis are able to inspire further research in the field of name tagging or other
related areas.
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