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Abstract

Pretrained language models (PLMs) have demonstrated strong performance
on many natural language processing (NLP) tasks. Despite their great success,
these PLMs are typically pretrained only on unstructured free texts without
leveraging existing structured knowledge bases that are readily available for
many domains, especially scientific domains. As a result, these PLMs may
not achieve satisfactory performance on knowledge-intensive tasks such as
biomedical NLP. Comprehending a complex biomedical document without
domain-specific knowledge is challenging, even for humans. Inspired by this
observation, we propose a general framework for incorporating various types
of domain knowledge from multiple sources into biomedical PLMs.

We encode domain knowledge using lightweight adapter modules, bot-
tleneck feed-forward networks that are inserted into different locations of a
backbone PLM. For each knowledge source of interest, we pretrain an adapter
module to capture the knowledge in a self-supervised way. We design a wide
range of self-supervised objectives to accommodate diverse types of knowledge,
ranging from entity relations to description sentences.

Once a set of pretrained adapters is available, we employ fusion layers to
combine the knowledge encoded within these adapters for downstream tasks.
Each fusion layer is a parameterized mixer of the available trained adapters
that can identify and activate the most useful adapters for a given input. Our
method diverges from prior work by including a knowledge consolidation phase,
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during which we teach the fusion layers to effectively combine knowledge
from both the original PLM and newly-acquired external knowledge using
a large collection of unannotated texts. After the consolidation phase, the
complete knowledge-enhanced model can be fine-tuned for any downstream
task of interest to achieve optimal performance.

Extensive experiments on many biomedical NLP datasets show that our
proposed framework consistently improves the performance of the underlying
PLMs on various downstream tasks such as natural language inference, ques-
tion answering, and entity linking. These results demonstrate the benefits
of using multiple sources of external knowledge to enhance PLMs and the
effectiveness of the framework for incorporating knowledge into PLMs. While
primarily focused on the biomedical domain in this work, our framework is
highly adaptable and can be easily applied to other domains, such as the
bioenergy sector.
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1. Introduction

Pretrained language models (PLMs) such as BERT [1] and T5 [2] have
recently revolutionized the field of natural language processing (NLP). The
main idea is to pretrain a model on a large-scale corpus of unannotated text
using one or more self-supervised learning objectives, such as the popular
masked language modeling (MLM) objective [1, 3, 4]. PLMs have been shown
to effectively capture rich semantic and syntactic patterns from plain texts
[5, 6]. As such, for a task of interest with some supervised data, a PLM can
typically be fine-tuned to achieve very competitive performance on the target
task [7, 8, 9].

While the majority of PLMs are pretrained on a general-domain corpus
such as Wikipedia, more and more PLMs are being introduced for more specific
domains, such as scientific domains [10, 11, 12]. For example, SciBERT [10]
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is a language model trained on a multi-domain corpus of 1.14M scientific
publications from Semantic Scholar [13]. Another example is BioBERT [11],
a model pretrained on large amounts of PubMed abstracts and PMC full-text
articles. By being pretrained on domain-specific texts, these domain-specific
PLMs are generally more effective than generic PLMs for NLP tasks within
the corresponding domain [14].

However, all these PLMs are trained using only unstructured text content,
typically by optimizing a self-supervised training objective. They do not
explicitly leverage external knowledge from high-quality structured knowledge
bases (KBs) such as UMLS [15] and PubChem [16]. As a result, these PLMs
may not achieve satisfactory performance on knowledge-intensive tasks such
as biomedical NLP. Indeed, comprehending a complex biomedical document
without domain-specific knowledge is quite challenging, even for humans.
While the current PLMs may acquire some domain-specific knowledge implic-
itly from the unstructured literature articles, such domain-specific knowledge
is implicitly stored in their model parameters. Due to the exponential growth
of scientific publications and knowledge [17], models that do not go beyond
their fixed set of parameters will likely fall behind [18, 19, 20, 21]. In fact,
recent studies on probing biomedical PLMs suggest that these models possess
a very limited amount of biomedical factual knowledge compared to a typical
knowledge base (KB) [22, 23]. The main reason is that biomedical documents,
either formal (e.g., scientific papers) or informal ones (e.g., clinical notes),
are written for domain experts [20, 24]. As such, they contain many highly
specialized terms, acronyms, and abbreviations of entities, whose definitions
and properties are not presented in the local contextual sentences that are
used to train the existing PLMs. For example, in the BioRelEx dataset [25],
a biomedical information extraction dataset, we find that about 65% of the
annotated entity mentions are abbreviations of biological entities, and an
example is shown in Figure 1.

Due to the limited capability of many existing PLMs in learning domain-
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Figure 1: An example in the BioRelEx dataset [25]. UIM is an abbreviation of “Ubiquitin-
Interacting Motif”. In our preliminary experiments, we found that our baseline SciBERT
model incorrectly predicts the mention as a “DNA” instead of a “Protein Motif”, even
though SciBERT was already pretrained on 1.14 million scientific papers.

specific knowledge from literature articles, recently, several methods have
been proposed to enhance biomedical PLMs directly with external domain
knowledge [20, 19, 26, 27]. For example, KECI [20], a biomedical information
extraction framework, utilizes an entity linker as a bridge for transferring
knowledge from UMLS [15] to neural models. Given that many high-quality
domain knowledge bases already exist in scientific domains and human experts
are also making an effort to maintain and grow such knowledge bases over
time, such an approach of knowledge-enhanced PLMs is appealing. It can
empower PLMs with more domain knowledge without requiring extra human
effort and would also enable PLMs to scale up to incorporate more knowledge
naturally over time.

Despite their effectiveness, many current methods for incorporating domain
knowledge bases, such as KECI, can only leverage a single source of knowledge
(e.g., UMLS). This limitation restricts the total amount of knowledge that can
be utilized for downstream tasks. In the biomedical domain, there are many
high-quality KBs that contain complementary knowledge [15, 28, 16]. It is
thus important to incorporate all of them into PLMs to maximize the amount
of encoded knowledge in the PLMs. However, this is technically challenging
as the types of knowledge vary greatly, and each tends to require a different
method of incorporation.

To address this challenge, we propose a novel general framework, called
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KEBLM (Knowledge-Enhanced Biomedical Language Models), for incorporating
various types of knowledge from multiple sources into biomedical PLMs.
More concretely, KEBLM encodes knowledge using adapter modules [29, 30, 31],
lightweight neural networks that are typically inserted into different layers
of a backbone PLM. For each knowledge source of interest, we pretrain an
adapter module to memorize the knowledge in it in a self-supervised way. We
design a wide range of self-supervised objectives to accommodate diverse types
of knowledge, ranging from entity-entity relations to description sentences.
Given a set of pretrained adapters, we use fusion layers [30] to combine the
knowledge encoded in the adapters for downstream tasks. Each fusion layer
is a parameterized mixer of the available trained adapters that can identify
and activate the most useful adapters for a given input.

Different from previous studies that also attempt to incorporate knowledge
from multiple sources using adapters [21], our method explicitly includes a
knowledge consolidation phase. During this phase, we teach the fusion layers
to effectively combine knowledge from both the original PLM and newly-
acquired external knowledge by using a large collection of unannotated texts.
Following the consolidation phase, the complete knowledge-enhanced model
can be fine-tuned for any downstream task of interest to achieve optimal
performance. The knowledge consolidation phase is crucial, as different types
of knowledge typically vary significantly. Consequently, the fusion layers may
not learn to incorporate them effectively if relying solely on fine-tuning from a
downstream task, especially in scientific domains where available task-specific
datasets are relatively small in size.

We evaluate the effectiveness of KEBLM by instantiating it to incorporate
three types of biomedical domain knowledge: (1) entity descriptions, (2)
entity-entity relations, and (3) entity synonyms. We use multiple biomed-
ical NLP datasets to study the impact of the incorporated knowledge on
three representative downstream tasks, i.e., natural language inference (NLI),
question answering (QA), and entity linking (EL). Our experiment results
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Knowledge Type Knowledge Base(s) Example(s)

Entity descriptions UMLS [15, 32] and PubChem [16] Phenylephrine(1+) is an organic cation obtained by protonation of
the secondary amino function of phenylephrine. It is an ammonium
ion derivative and an organic cation. It is a conjugate acid of a
phenylephrine.

Entity-entity relations MSI (multiscale interactome) [33] (SLBP, interacts with, CSTF3)
(EPB41L2, interacts with, EFTUD2)
(APOA2, has function, phosphatidylcholine biosynthetic process)

Entity synonyms UMLS [15] Synonym pairs: (Cancer, Malignant Neoplasms), (Influenza, Human
Flu), (EGFR, Epidermal Growth Factor Receptor)

Table 1: Knowledge types we consider in this work.

show that KEBLM consistently outperforms the baseline PLMs on all the tasks
in all measures. Furthermore, we observe that incorporating more domain
knowledge generally leads to greater improvement. This showcases the effec-
tiveness of KEBLM as a general framework for incorporating multiple sources of
knowledge, as well as the overall benefits of including explicit domain-specific
knowledge to enhance task performance. Note that while primarily focused
on the biomedical domain in this work, our framework is highly adaptable
and can be easily applied to other domains, such as the bioenergy sector.

In the following parts, we first describe our proposed framework for
external knowledge incorporation in Section 2. We then discuss the conducted
experiments and their results in Section 3. After that, Section 4 outlines
previous related work. Finally, we conclude this work in Section 5.

2. Methods

Figure 2 shows an overview of KEBLM, our proposed framework. KEBLM en-
codes external domain knowledge using adapter modules [30, 31] (Section 2.1).
We pretrain one adapter module for each knowledge source of interest (Section
2.2). As adapter modules are essentially lightweight neural networks, their
pretraining process is typically less computationally demanding compared to
the standard pretraining of full PLMs.

In this work, we consider three different types of knowledge: (1) entity
descriptions, (2) entity-entity relations, and (3) entity synonyms. Table 1
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Figure 2: An overview of KEBLM. An adapter module is a group of adapters pretrained
together to encode knowledge from a particular source of knowledge.

provides an overview of the knowledge types. As different adapter modules
learn to encode different kinds of knowledge and features, we propose to use
fusion layers to combine their knowledge for downstream tasks (Section 2.3).
Each fusion layer is a parameterized mixer of the available trained adapters
[30]. Basically, using fusion layers allows for the identification and activation
of the most useful adapters for a given input, as the knowledge from some
adapters may be more helpful than others for a specific task/input.

Compared to earlier studies that also integrate knowledge from various
sources using adapters [21], our approach specifically includes a knowledge
consolidation phase. In this phase, we teach the fusion layers to effectively
combine knowledge from the original PLM and newly-acquired external
knowledge by using a large collection of unannotated texts. This knowledge
consolidation phase is discussed in more detail in Section 2.3.
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2.1. Adapter Modules

A common transfer learning technique in NLP is full fine-tuning, which
involves copying the weights of a PLM and tuning all of them on some
downstream task of interest [34]. Despite its effectiveness [35, 1, 36], full fine-
tuning can be computationally expensive as the entire PLM needs to be tuned.
Adapter modules [29, 30] were introduced as an alternative method for more
parameter-efficient adaptation of PLMs. Adapters are small neural networks
added between layers of a PLM. During model tuning on a downstream task,
only the parameters of the added adapters are updated while the weights of
the original PLM are frozen. Therefore, adapter-based tuning adds only a
small amount of parameters for each downstream task of interest.

In this work, we use adapter modules to encode external domain knowledge.
For each knowledge source of interest, we pretrain an adapter module to
memorize the knowledge in it. This approach enables a highly extensible
integration of knowledge. When a new source of knowledge emerges, we
need to pretrain a new adapter module; however, we do not need to update
the parameters of any existing pretrained adapter modules. A related work,
DAKI [21], also aims to incorporate domain knowledge from multiple sources
using adapters. We compare and contrast our approach with DAKI in greater
detail in Section 4.

We use a simple but effective bottleneck architecture for the adapters
[30, 31], which is illustrated in the left part of Figure 2. Each layer of a
typical Transformer-based PLM contains two primary sub-layers: a multi-
head attention layer and a feed-forward layer [37]. In addition, a residual
connection is employed around each of the two sub-layers, followed by layer
normalization. We insert an adapter after each feed-forward sub-layer and its
corresponding Add & Norm layer (see Figure 2).

Each adapter first projects the features it receives into a smaller dimension,
applies a non-linearity (e.g., ReLU), and then projects the resulting vector
back to the original dimension. There is also a skip-connection that connects
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the output of the feed-forward layer to the output of the up-projection layer.
If we denote the dimension of the hidden states in the backbone PLM as d

and the bottleneck dimension as m, then the total number of new parameters
in a single adapter is 2md+d+m. In practice, m ≪ d, therefore, the number
of parameters per adapter is typically small.

Note that we use the term “adapter module” to refer to a group of adapters
pretrained together to encode a particular type of knowledge. In other words,
for a knowledge source of interest, we first add an adapter to every Transformer
layer of the backbone PLM. After that, we pretrain them together on some
self-supervised learning task to be discussed in Section 2.2. For example,
suppose we want to enhance a PLM consisting of 12 Transformer layers with
knowledge from three different sources. Then the number of adapter modules
will be 3, and the total number of adapters will be 12× 3 = 36.

In this work, we add adapters to all layers of the backbone PLM because
we aim to adapt every single layer to capture the external knowledge. Despite
the addition of adapters to all the layers, the computational cost remains low
as the number of parameters in each adapter is minimal.

2.2. Adapters Pre-training

In this work, we explore three different types of knowledge: (1) entity
descriptions, (2) entity-entity relations, and (3) entity synonyms. These
knowledge types are popular and commonly available in various knowledge
bases. Table 1 provides an overview of the knowledge types. For each
knowledge type, we pretrain an adapter module using a self-supervised learning
objective specifically designed for it. During the pretraining process, only
the parameters of the adapter modules are updated while the weights of the
backbone PLM are frozen. Note that our proposed KEBLM is highly extensible
and not constrained to only the knowledge types discussed here.

In general, our approach to designing learning objectives is to encourage
a model to accurately predict the information contained in a knowledge
source of interest. However, the specific form of the objective depends on the
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type of knowledge. For instance, since entity descriptions offer rich textual
information, employing the masked language modeling objective [1] appears
to be a natural choice. On the other hand, for more structured entity relations,
a ranking objective would be more suitable, requiring the model to rank all
the actual relations present in the knowledge source higher than negatively
sampled relations.

Entity descriptions. Biomedical KBs typically have informative descriptions
about many different entities. For example, at least 100 million pairs of
concepts and corresponding definitions or descriptions can be constructed
from UMLS [15]. Biomedical documents typically contain many highly spe-
cialized terms, acronyms, and abbreviations. Therefore, knowledge from the
description sentences in external KBs can be extremely helpful when trying
to comprehend biomedical documents. To this end, we propose to use the
masked language modeling (MLM) objective [1] to incorporate knowledge
from the description sentences.

The MLM objective is a form of denoising-autoencoding, where the task
is to restore a corrupted input sequence. More specifically, given the textual
description of some biomedical entity, we first mask some percentage of its
tokens at random to produce a corrupted input sequence. The model then
needs to predict the masked tokens.

Entity-entity relations. Several biomedical knowledge graphs (KGs), such
as UMLS [15] and MSI [33], have a lot of information about the relations
between different entities. Let T = {(h, r, t) | h, t ∈ E , r ∈ R} be the
collection of ordered triples in a KG of interest, where E and R are the sets of
entities and relations (respectively). We aim to pretrain an adapter module
to memorize all the relations stored in T .

Concretely, the pre-training task is to train a model to assign high scores
to correct positive triples in T and low scores to triples that are likely to be
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incorrect [38]. We use the max-margin loss function:

L(x) = 1

B

B∑
i=1

max(0, λ− f(x) + f(x̃i)) (1)

where f(.) takes a triple as input and returns a score indicating its plausibility.
x ∈ T is a positive triple. x̃i is a negative triple constructed by swapping the
head or tail entity of x with a random entity. B is the number of negative
samples per positive triple. λ is a margin hyperparameter.

In order to compute f(x), we first convert the triple x = (h, r, t) to a
textual sequence Text[x] by concatenating the words in the names of its
components. We then use the backbone PLM augmented with the adapter
module to transform Text[x] into a feature vector x. Finally, we apply an
additional linear layer to x to get the final plausibility score. This process is
summarized as follows:

x = reduce
(
ϕθPLM,θER

(
Text[x]

))
f(x) = FFNNs(x)

(2)

where ϕθPLM,θER(.) denotes the entire encoder stack consisting of the PLM
and the adapter module. θPLM denotes the parameters of the PLM, while
θER denotes the parameters of the adapter module. reduce(.) is a function
that returns the final hidden state of the encoder that corresponds to the first
input token. FFNNs is a feed-forward neural network with a single output
dimension. Only θER and FFNNs are updated during pretraining.

Entity synonyms. A biomedical KB such as UMLS [15] typically has a compre-
hensive collection of biomedical synonyms in various forms. For example, the
2020AA version of UMLS has 4M+ concepts and 10M+ synonyms that stem
from over 150 controlled vocabularies such as MeSH, SNOMED CT, RxNorm,
Gene Ontology, and OMIM [39]. Knowledge of biomedical synonyms can be
useful for various downstream tasks such as entity linking [39, 40], information
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extraction [41], and paraphrase detection [42]. To this end, we propose to use
a contrastive training objective [39] to incorporate knowledge of biomedical
synonyms.

Note that it is technically possible to utilize the same ranking objective
presented for entity-entity relations for incorporating knowledge of entity
synonyms. Nevertheless, we choose the contrastive training objective in this
context, as previous research, such as CLIP [43], has demonstrated its efficacy
in modeling the similarity between different objects. The contrastive loss
function is highly effective for models that need to prioritize the measurement
of similar objects over dissimilar ones.

Formally, let E = {e1, e2, . . . , eK} be the set of all entities in a KB of
interest. We assume that each entity e is associated with a set of textual
names N (e). For example, in UMLS, some of the names associated with the
entity C0004057 include “aspirin” and “2-(Acetyloxy)benzoic Acid”. If two
names are associated with the same entity, then we consider them as synonyms.
Finally, let N denote the set of all names in the KB (i.e., N = ∪K

i=1N (ei)).
The objective is to learn a function g : N → Rd that maps each entity

name in N to a feature vector. If ni and nj are synonyms, the similarity
between g(ni) and g(nj) needs to be high (and vice versa). We model the
function g as follows:

g(n) = reduce
(
ϕθPLM,θES

(
Text[n]

))
(3)

where n ∈ N is an entity name. Text[n] consists of all the words in the
name. ϕθPLM,θES(.) is the encoder stack consisting of the PLM and the adapter
module. θES denotes the parameters of the adapters.

In this work, we use the contrastive learning framework defined in [44] to
train the function g. During pretraining, we freeze θPLM and only update
θES. We use the cosine similarity function to evaluate the similarity of any
two feature vectors.
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Lastly, it is worth noting that when discussing the incorporation of knowledge
types such as entity-entity relations and entity synonyms, we introduce a
function Text[x] that essentially transforms an object, like a relation triple or
a mention, into a textual sequence. While the strategy for creating input text
from such an object could impact the performance, we reserve this exploration
for future research and employ only the simple strategies discussed here.

2.3. Knowledge Fusion

Once the adapter modules are pretrained, we use fusion layers to combine
their knowledge for downstream tasks. We directly utilize the AdapterFusion
mixture layers [30] that can learn to identify and activate the most useful
adapters for a given input. We refer readers to [30] for a complete description
of the mixture layers.

After incorporating randomly initialized fusion layers into the model stack
(see the right part of Figure 2), it becomes possible to fine-tune the entire
model for a specific downstream task of interest. However, since each adapter
module encodes a distinct type of knowledge, the fusion layers may face
difficulties in learning to effectively combine them, particularly if the fine-
tuning dataset contains a limited number of examples. To address this issue,
we propose conducting a knowledge consolidation phase to aid the fusion
layers in its learning process.

More specifically, we first gather a large collection of biomedical texts
(e.g., publication abstracts) that can be easily obtained from the internet.
Next, we attach a masked language modeling (MLM) head to the model stack
and train the entire system for the MLM task using the collected corpus.
During this process, we freeze the parameters of the backbone PLM and the
pretrained adapter modules, allowing only the fusion layers and the newly
attached MLM head to be trained. The intuition behind this approach is that
it forces the fusion layers to effectively synthesize knowledge from different
adapter modules and the original PLM.
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(a) Entity linking. (b) Text pair classification.

Figure 3: Our approaches for using KEBLM in downstream tasks such as entity linking (EL),
natural language inference (NLI), and question answering (QA). The left part presents a
high-level overview of our EL method, while the right part outlines our approaches for NLI
and QA.

Following the knowledge consolidation phase, we simply remove the MLM
head, rendering the entire stack ready for fine-tuning on any downstream task
of interest.

3. Experiments and Results

3.1. Datasets and experimental settings

3.1.1. Downstream tasks

We evaluate our KEBLM on six datasets over three downstream tasks,
including four entity linking (EL) datasets, one natural language inference
(NLI) dataset, and one question answering (QA) dataset.

Entity Linking. Biomedical EL is the task of mapping entity mentions in a
biomedical document to referent entities in a given KB [45, 46]. Our approach
to EL is to train an encoder ϕ that encodes mentions and entity names into
the same vector space [47, 46]. Before inference, we use ϕ to pre-compute
embeddings for all the entity names in the KB. During inference, mentions
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are also encoded by ϕ and entities are retrieved using the cosine similarity
function. ϕ can be based on an existing PLM (e.g., SciBERT, BioBERT) or
our newly proposed KEBLM. The left part of Figure 3 provides a high-level
overview of our approach to EL.

We use four EL datasets: NCBI-d [48], BC5CDR-c and BC5CDR-d [49],
and COMETA [50]. For each dataset, we follow the data split by [39]. We refer
the readers to [39, 46] for more information about the problem formulation,
the general EL approach, and the datasets.

Natural Language Inference. NLI is the task of determining whether a hy-
pothesis is true (entailment), false (contradiction), or undetermined (neutral)
based on a given premise. For example, consider the following premise and
hypothesis:

• Premise: Watermelon stomach with gastric varices, without bleed in
more than 2 years

• Hypothesis: Patient has hematemesis.
Informally speaking, “hematemesis” refers to the vomiting of blood. Therefore,
the hypothesis contradicts the premise.

Compared to the general domain, there are relatively fewer studies on
NLI in the biomedical domain [51, 52]. In this work, we simply formulate
the task as a text pair classification problem (see the right part of Figure 3).
Specifically, for each example, we concatenate the premise and hypothesis
into a single input sequence and feed it into a Transformer-based model, such
as KEBLM, with a classification head.

We train and evaluate NLI models on MedNLI [51], an NLI dataset
consisting of sentence pairs extracted from MIMIC-III, a comprehensive
clinical database. MedNLI has 11,232 premise-hypothesis pairs in the training
set, 1,395 pairs in the development set, and 1,422 pairs in the test set.

Question Answering. We also evaluate KEBLM on the task of question an-
swering (QA) using the PubMedQA dataset [53]. PubMedQA contains a
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Dataset Train Dev Test Estimated Max. Input

Examples Examples Examples Length (Words)

NCBI-d 5,134 787 960 12

BC5CDR-c 5,203 5,347 5,385 26

BC5CDR-d 4,182 4,244 4,424 17

COMETA 13,489 2,176 4,350 6

MedNLI 11,232 1,395 1,422 207

PubMedQA 450 50 500 487

Table 2: Statistics of the downstream task datasets. The table shows the number of train,
dev, and test examples, as well as the estimated maximum input length (measured in terms
of the number of words) for each dataset.

collection of research questions and corresponding reference texts taken from
PubMed abstracts, each of which is labeled with whether the text contains
the answer to the research question (yes/maybe/no). We use the original
train/dev/test split, which consists of 450/50/500 questions, respectively,
for our experiments. Similar to NLI, we also formulate QA as a text pair
classification problem (see the right part of Figure 3). For each example, the
input is the concatenation of the question and the reference text.

Table 2 presents a summary of the statistics for all the downstream
task datasets. To ensure compatibility with the underlying PLM, inputs
that exceed the maximum token length are truncated. Specifically, after
preprocessing and tokenization, inputs are truncated to retain only the first
N tokens, where N represents the maximum token limit allowed by the PLM.

3.1.2. Pretraining setup

In this work, we use BioBERT [11] and SciBERT [10] as our base PLMs.
For each base PLM, we pretrain three different adapter modules to incorporate
three different types of knowledge (see Table 1 for an overview): (1) entity
descriptions, (2) entity-entity relations, and (3) entity synonyms.

We utilize UMLS [15] and PubChem [16] to gather entity descriptions.
More specifically, following the procedure of [32], we first collect over 100 mil-
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lion pairs of concepts and corresponding definitions or descriptions from UMLS
[15]. In addition, we extract approximately 102,980 compound-description
pairs from PubChem [54]. After combining the descriptions from the two
sources and doing some filtering (e.g., removing PubChem descriptions that
are too short), our final set consists of 130 million descriptions or definitions
of a diverse range of entities from the chemistry and biomedical domains,
including molecules, genes, and diseases.

We utilize a knowledge graph (KG) called MSI [33] to collect entity-entity
relationships. This recent network encompasses diseases, proteins, genes, drug
targets, and biological functions. Overall, MSI comprises 29,959 entities, 6
relation types, and allows for the extraction of 484,654 positive triples.

To collect information of biomedical synonyms from UMLS [15], we use
the same procedure employed for pretraining SAPBERT [39].

Finally, we gather more than 30 million abstracts from PubMed for the
knowledge consolidation phase. During the knowledge consolidation phase,
the parameters of the base PLM are frozen, while only the parameters of the
fusion layers and a new MLM head are updated. As a result, the knowledge
consolidation process should be considerably less computationally demanding
compared to the standard pretraining of full PLMs on all these abstracts.

To implement the adapters, we utilize the AdapterHub framework1 [31].
Each adapter has a bottleneck architecture, as proposed by [55], which
corresponds to the PfeifferConfig in AdapterHub. We initialize each
adapter using the default parameters provided by PfeifferConfig, with the
exception of the reduction factor, which we set to 4.

3.1.3. Hyperparameters

For fine-tuning on EL datasets, we utilize our existing codebase2 that was
previously used in a different study on biomedical EL [46]. We explore a

1https://docs.adapterhub.ml/index.html
2https://github.com/laituan245/rescnn_bioel
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Models
Top-1 Accuracy (on test sets)

NCBI-d BC5CDR-d BC5CDR-c COMETA
Previous SOTA Methods
BioSyn [56] 91.1 93.2 96.6 71.3
SapBERT [39] 92.5 93.8 96.8 77.0
ResCNN (Max Pooling) [46] 92.4 93.1 96.8 80.1
BioBERT 92.0 93.3 96.2 80.6
KEBLM (BioBERT) - Ours 93.2↑ 93.7↑ 96.6↑ 80.8↑

SciBERT 91.5 93.0 96.2 77.3
KEBLM (SciBERT) - Ours 93.5↑ 93.3↑ 96.5↑ 77.8↑

Table 3: Overall test results on the four biomedical EL datasets. The best ones are
highlighted in bold, while “↑” denotes that improvements are observed when comparing
KEBLM with the corresponding baseline model. All observed improvements are statistically
significant with a p-value < 0.05.

range of parameter values for the fine-tuning process, including lower learning
rates of {1e-5, 5e-5}, upper learning rates of {0.001, 0.0001}, batch sizes of
{64, 128}, and training epochs of {25, 50}. The lower learning rate is applied
to update the backbone LM, adapter modules, and fusion layers (if applicable),
while the upper learning rate is designated for updating other parameters in
the entire model stack.

For fine-tuning on NLI and QA datasets, the optimal values are variant-
specific. We experiment with the following range of possible values: a learning
rate of {1e − 5, 5e − 5}, a batch size of {8, 16, 32}, the number of training
epochs set to {10, 25, 50}, and a weight decay of {0, 0.01}. The maximum
number of input tokens is set to 512. For each variant, we evaluate the test
performance of the checkpoint that achieves the best score on the designated
development set.

3.2. Performance on downstream tasks

Table 3 shows the performance of various entity linking (EL) models. We
observe that KEBLM consistently improves the performance of both BioBERT
and SciBERT on all datasets. Table 4 presents the overall results on the
NLI and QA datasets. Similar to the EL results, KEBLM is also effective in
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MedNLI (Accuracy) PubMedQA (Accuracy)
SciBERT - Ours 80.59 55.2
KEBLM (SciBERT) - Ours 82.14 59.0
SciBERT + MoP [19] 81.43 54.78
BioBERT - Ours 82.21 62.2
KEBLM (BioBERT) - Ours 84.24 68.0
BioBERT + MoP [19] 83.44 61.82
BioBERT + DAKI [21] 83.41 -

Table 4: Overall test results on the NLI and QA datasets. DAKI [21] did not use PubMedQA
in their study.

Models
Top-1 Accuracy (on development sets)

NCBI-d BC5CDR-d BC5CDR-c COMETA
BioBERT 94.3 93.5 98.2 80.3
KEBLM (BioBERT) - Ours 94.5 93.7 98.3 80.7
SciBERT 92.2 92.5 97.6 77.2
KEBLM (SciBERT) - Ours 94.2 92.6 98.2 77.3

Table 5: Overall results on the development sets of the four biomedical EL datasets.

enhancing the performance of the base PLMs. Furthermore, in Table 4, we
compare KEBLM to MoP [19] and DAKI [21], which are previous methods
that also incorporate external knowledge. KEBLM consistently outperforms
these competing methods in terms of absolute performance scores. It is worth
noting that, similar to our study, DAKI [21] aims to incorporate domain
knowledge from multiple sources using adapters. However, a key distinction
lies in our method’s inclusion of an explicit knowledge consolidation phase.

For a more comprehensive comparison of the models, Table 5 and Table 6
also present the results on the development sets. Overall, these results align
well with those from the test sets. For instance, based on the development
set scores, it is evident that our proposed framework effectively integrates
diverse external knowledge types, leading to improved performance in the
target tasks.
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MedNLI (Accuracy) PubMedQA (Accuracy)
SciBERT - Ours 82.94 54.0
KEBLM (SciBERT) - Ours 83.01 56.0
BioBERT - Ours 83.58 66.0
KEBLM (BioBERT) - Ours 84.66 70.0

Table 6: Overall results on the development sets of NLI and QA datasets.

3.3. Analysis

Ablation Study. We thoroughly examine the impact of the knowledge modules
through an ablation study and present the findings in Table 7. Evidently, the
knowledge consolidation phase plays a crucial role in enabling the fusion layers
to effectively integrate knowledge from various adapter modules. A noticeable
decline in performance is observed when the knowledge consolidation phase
is omitted. Moreover, we find that, generally, incorporating more external
knowledge leads to more improvement. When incorporating knowledge from
two or more sources, we can achieve better performance on MedNLI than
when we leverage only one single knowledge source. These results demonstrate
the effectiveness of KEBLM as a general framework for incorporating multiple
sources of knowledge.

Qualitative Analysis. We attempted to manually examine some predictions
made by both our knowledge-enhanced models and the baseline models.
Generally, it is not always possible to ascertain the exact reasons why a model
made an error, given the inherent complexity of each model with hundreds
of millions of parameters and the fact that interpretable machine learning
remains an active area of research. As a result, it is not always straightforward
to determine when knowledge proves beneficial. Nevertheless, to gain some
insights, we will present instances where knowledge is evidently helpful.

First, we provide some qualitative analyses to demonstrate the strengths
of our models over the baseline models in Table 8.

In the first example, which comes from MedNLI, the baseline model
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MedNLI (Accuracy)
KEBLM (BioBERT) 84.24
without KC 83.90
without KC and ED 83.68
without KC and ER 83.61
without KC and ES 83.26
without KC and [ED, ER] 82.63
without KC and [ED, ES] 82.42
without KC and [ER, ES] 83.19
BioBERT (without any external knowledge) 82.21

Table 7: Ablation analysis. Here, KC refers to the knowledge consolidation phase. In
addition, ED, ER, and ES refer to the adapter modules that encode entity descriptions,
entity-entity relations, and entity synonyms, respectively.

incorrectly predicts the relation between the given premise and hypothesis to
be “neutral.” This is likely because the baseline model does not understand
the technical term “hematemesis,” which refers to the vomiting of blood
(informally speaking). However, the definition of this term is readily available
on UMLS and is also part of our pretraining data. As such, it is likely the
reason why KEBLM is able to correctly predict that the relation should be
“contradiction.”

In the second example related to QA, the reference text is a long abstract
that does not provide an explicit yes or no answer to the given question.
Instead, a large part of it discusses conducted analyses and numerical results
(not shown in Table 8 due to space constraints), which can make it difficult for
an automatic model to determine the correct answer. As a result, our baseline
model, which does not incorporate external knowledge, incorrectly predicts
the answer to be “no.” However, by looking at the definition of “spasticity” in
UMLS, we can see that it is a form of muscle disorder. With this knowledge,
we can guess that reducing spasticity is likely to increase functional benefit,
even without reading the abstract. This is likely the reason why KEBLM is
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Input Label Model Predictions

Task: Natural Language Inference (MedNLI)
Premise: Watermelon stomach with gastric varices,
without bleed in more than 2 years.
Hypothesis: Patient has hematemesis.

Contradiction
SciBERT: Neural
KEBLM (SciBERT): Contradiction

Task: Question Answering (PubMedQA)
Question: Does reducing spasticity translate into
functional benefit?
Reference Text: Spasticity and loss of function in
an affected arm are common after stroke. Although
botulinum toxin is used to reduce spasticity, its
functional benefits are less easily demonstrated. This
paper reports an exploratory meta-analysis to ...

Yes
BioBERT: No
KEBLM (BioBERT): Yes

Task: Entity Linking (COMETA)
Mention and its context: I was recomended the
5HTP and as I said it initially worked but havn ’ t
been taking it since.

Oxitriptan
(substance)

SciBERT: Azacitidine
KEBLM (SciBERT): Oxitriptan

Table 8: Examples showing how external knowledge improves prediction accuracy.

able to return the correct answer of “yes,” since one of the knowledge types
we consider is definition sentences from UMLS.

The final example in Table 8, taken from the COMETA corpus for medical
entities in social media, is challenging for our baseline model to handle. The
context in this example, as is typical in tweets or Facebook posts, is relatively
short. Additionally, the surface form of the target mention, "5HTP," differs
from all the names of the correct entity stored in COMETA’s KB. In contrast,
by utilizing synonym information from UMLS, KEBLM can easily identify the
correct entity and rank it at the top.

4. Related Work

In recent years, there have been many studies that explicitly aim to inject
external knowledge into PLMs [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]. A
promising direction is to utilize structured knowledge bases (KBs) to augment
Transformer-based PLMs. Some notable studies include ERNIE [59] and
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KnowBERT [58], where the entity information from KBs is explicitly linked
with the input text during pre-training yielding entity-enhanced variants of
BERT models. For ERNIE and KnowBERT to work, an entity linker is
required to connect the input text to information in the external KBs. In
contrast, KEBLM, our proposed framework, does not have such a requirement.
This characteristic makes KEBLM applicable to new scientific domains that do
not have any high-quality entity linkers.

Another line of work adopts the retrieve-and-read framework [57, 60, 61,
63, 67]. Typically, given an input of some NLP task, a retrieval component
first retrieves potentially relevant text snippets (e.g., sentences or paragraphs)
from a corpus (e.g., Wikipedia). After that, another model produces the
final output conditioned on the original input and the retrieved information.
While advancing the state-of-the-art of many knowledge-intensive tasks, most
methods in this direction focus only on retrieving information from Wikipedia
[57, 60, 67]. This is different from our KEBLM, which leverages knowledge from
multiple sources.

Compared to the general domain, there have been fewer studies on in-
corporating external knowledge into biomedical models [68, 19, 20, 21, 69].
For instance, UmlsBERT [69] is a contextual embedding model that inte-
grates clinical domain knowledge from the UMLS Metathesauru during the
pre-training process. Another noteworthy study is that of SAPBERT [39],
which is a pre-training scheme designed to learn information from a collection
of biomedical synonyms from UMLS. In our research, we not only utilize
knowledge from UMLS but also incorporate information from other knowledge
bases, such as PubChem [16] and MSI [33]. Additionally, our study differs
from SAPBERT in that we not only evaluate our proposed KEBLM on entity
linking tasks but also on other downstream tasks, such as NLI and QA.

Mixture-of-Partitions (MoP) [19] is a novel approach for infusing knowledge
by partitioning knowledge graphs into smaller sub-graphs. While MoP focuses
only on knowledge triples of (subject, relation, object), our KEBLM incorporates
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a broader range of knowledge types. In this work, our specific instantiation of
KEBLM also considers knowledge such as entity descriptions and synonyms in
addition to entity relations. This makes KEBLM a more general and versatile
approach to knowledge infusion. Additionally, KEBLM can be easily extended
to apply the idea of graph partitioning of MoP when incorporating knowledge
of entity relations.

A closely related work, DAKI [21], also aims to integrate domain knowledge
from multiple sources using adapters. Unlike DAKI, our method explicitly
includes a knowledge consolidation phase (see Section 2.3). During this phase,
we train the fusion layers to effectively combine knowledge from both the
original PLM and newly acquired external knowledge by utilizing a vast
collection of unannotated texts. Furthermore, different from our work, DAKI
does not explicitly incorporate synonym information from external KBs, which
can be extremely useful for tasks such as entity linking. Our experimental
results on MedNLI also suggest that KEBLM can be more effective than
DAKI in incorporating external knowledge into biomedical PLMs (refer to
Section 3).

5. Conclusions and Future Work

This work proposes KEBLM, a general framework for incorporating various
types of domain knowledge from many sources into biomedical PLMs. Ex-
tensive experiments show that KEBLM is highly effective as it can consistently
improve the performance of the underlying PLMs. In the future, we plan
to extend KEBLM to incorporate other types of complex knowledge, such as
molecule structures, and to explore its use for incorporating knowledge from
general-domain KBs to tackle general-domain NLP tasks.
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