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The goal of text-to-text generation is to make machines express like a human in many applications such as
conversation, summarization, and translation. It is one of the most important yet challenging tasks in natural
language processing (NLP). Various neural encoder-decoder models have been proposed to achieve the goal
by learning to map input text to output text. However, the input text alone often provides limited knowledge
to generate the desired output, so the performance of text generation is still far from satisfaction in many
real-world scenarios. To address this issue, researchers have considered incorporating (i) internal knowledge
embedded in the input text and (ii) external knowledge from outside sources such as knowledge base and
knowledge graph into the text generation system. This research topic is known as knowledge-enhanced text
generation. In this survey, we present a comprehensive review of the research on this topic over the past five
years. The main content includes two parts: (i) general methods and architectures for integrating knowledge
into text generation; (ii) specific techniques and applications according to different forms of knowledge data.
This survey can have broad audiences, researchers and practitioners, in academia and industry.
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1 INTRODUCTION
Text generation, which is often formally referred as natural language generation (NLG), is one of
the most important yet challenging tasks in natural language processing (NLP) [34]. NLG aims at
producing understandable text in human language from linguistic or non-linguistic data in a variety
of forms such as textual data, numerical data, image data, structured knowledge bases, and knowl-
edge graphs. Among these, text-to-text generation is one of the most important applications and
thus often shortly referred as “text generation”. Researchers have developed numerous technologies
for this task in a wide range of applications [35, 52, 120]. Text generation takes text (e.g., a sequence,
keywords) as input, processes the input text into semantic representations, and generates desired
output text. For example, machine translation generates text in a different language based on the
source text; summarization generates an abridged version of the source text to include salient
information; question answering (QA) generates textual answers to given questions; dialogue
system supports chatbots to communicate with humans with generated responses.
With the recent resurgence of deep learning technologies [63], deep neural NLG models have

achieved remarkable performance in enabling machines to understand and generate natural lan-
guage. A basic definition of the text generation task is to generate an expected output sequence from
a given input sequence, called sequence-to-sequence (Seq2Seq). The Seq2Seq task and model were
first introduced in 2014 [112]. It maps an input text to an output text under encoder-decoder schemes.
The encoder maps the input sequence to a fixed-sized vector, and the decoder maps the vector to the
target sequence. Since then, developing NLG systems has rapidly become a hot topic. Various text
generation models have been proposed under deep neural encoder-decoder architectures. Popular
architectures include recurrent neural network (RNN) encoder-decoder [112], convolutional neural
network (CNN) encoder-decoder [36], and Transformer encoder-decoder [117].
Nevertheless, the input text alone contains limited knowledge to support neural generation

models to produce the desired output. Meanwhile, the aforementioned methods generally suffer
from an inability to well comprehend language, employ memory to retain and recall knowledge,
and reason over complex concepts and relational paths; as indicated by their name, they involve
encoding an input sequence, providing limited reasoning by transforming their hidden state given
the input, and then decoding to an output. Therefore, the performance of generation is still far
from satisfaction in many real-world scenarios. For example, in dialogue systems, conditioning on
only the input text, a text generation system often produces trivial or non-committal responses of
frequent words or phrases in the corpus [134, 153], such as “Me too.” or “Oh my god!” given the input
text “My skin is so dry.” These mundane responses lack meaningful content, in contrast to human
responses rich in knowledge. In comparison, humans are constantly acquiring, understanding, and
storing knowledge from broader sources so that they can be employed to understand the current
situation in communicating, reading, and writing. For example, in conversations, people often first
select concepts from related topics (e.g., sports, food), then organize those topics into understandable
content to respond; for summarization, people tend to write summaries containing keywords used
in the input document and perform necessary modifications to ensure grammatical correctness and
fluency; in question answering (QA), people use commonsense or professional knowledge pertained
to the question to infer the answer. Therefore, it is often the case that knowledge beyond the input
sequence is required to produce informative output text.
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Fig. 1. We divide different knowledge sources into internal knowledge and external knowledge. Internal
knowledge creation takes place within the input text(s), while external knowledge acquisition occurs when
knowledge is provided from outside sources (e.g., Wikipedia, ConceptNet [110]).

1.1 What is Knowledge-enhanced Text Generation?
In general, knowledge is the familiarity, awareness, or understanding that coalesces around a
particular subject. In NLG systems, knowledge is an awareness and understanding of the input text
and its surrounding context. These knowledge sources can be categorized into internal knowledge
and external knowledge (see Figure 1). Internal knowledge creation takes place within the input
text(s), including but not limited to keyword, topic, linguistic features, and internal graph structure.
External knowledge acquisition occurs when knowledge is provided from outside sources, including
but not limited to knowledge base, external knowledge graph, and grounded text. These sources
provide information (e.g., commonsense triples, topic words, reviews, background documents)
that can be used as knowledge through various neural representation learning methods, and then
applied to enhance the process of text generation. In addition, knowledge introduces interpretability
for models with explicit semantics. This research direction of incorporating knowledge into text
generation is named as knowledge-enhanced text generation.

Problem 1 (Knowledge-enhanced Text Generation). Given a text generation problem where
the system is given an input sequence 𝑋 , and aims to generate an output sequence 𝑌 . Assume we
also have access to additional knowledge denoted as 𝐾 . Knowledge-enhanced text generation aims
to incorporate the knowledge 𝐾 to enhance the generation of 𝑌 given 𝑋 , through leveraging the
dependencies among the input text, knowledge, and output text.

Many existing knowledge-enhanced text generation systems have demonstrated promising
performance on generating informative, logical, and coherent texts. In dialogue systems, a topic-
aware Seq2Seq model helped understand the semantic meaning of an input sequence and generate
a more informative response such as “Then hydrate and moisturize your skin.” to the aforementioned
example input “My skin is so dry.” In summarization, knowledge graph produced a structured
summary and highlight the proximity of relevant concepts, when complex events related with the
same entity may span multiple sentences. A knowledge graph enhanced Seq2Seq model generated
summaries that were able to correctly answer 10% more topically related questions [51]. In question
answering (QA) systems, facts stored in knowledge bases completed missing information in the
question and elaborate details to facilitate answer generation [27, 45]. In story generation, using
commonsense knowledge acquired from knowledge graph facilitated understanding of the storyline
and better narrate following plots step by step, so each step could be reflected as a link on the
knowledge graph and the whole story would be a path [43].

1.2 Why a Survey of Knowledge-enhanced Text Generation?
Recent years have witnessed a surge of interests in developingmethods for incorporating knowledge
in NLG beyond input text. However, there is a lack of comprehensive survey of this research topic.
Related surveys have laid the foundation of discussing this topic. For example, Garbacea et al. [34]
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Fig. 2. Categorization of information sources and methods for knowledge-enhanced text generation. Knowl-
edge can be learnt from various information sources, and then integrated into the generation process.

and Gatt et al. [35] reviewed model architectures for core NLG tasks but did not discuss knowledge-
enhanced methods. Ji et al. [55] presented a review on knowledge graph techniques which could
be used for enhancing NLG. Wang et al. [120] summarized how to represent structural knowledge
such as knowledge base and knowledge graph for reading comprehension and retrieval.
To the best of our knowledge, this is the first survey that presents a comprehensive review of

knowledge-enhanced text generation. It aims to provide NLG researchers a synthesis and pointer
to related research. Our survey includes a detailed discussion about how NLG can benefit from
recent progress in deep learning and artificial intelligence, including technologies such as graph
neural network, reinforcement learning, and neural topic modeling.

1.3 What are the Challenges in Knowledge-enhanced Text Generation?
To start with, we note that the first challenge in knowledge-enhanced NLG is to obtain useful related
knowledge from diverse sources. There has been a rising line of work that discovers knowledge
from topic, keyword, knowledge base, knowledge graph and knowledge grounded text. The second
challenge is how to effectively understand and leverage the acquired knowledge to facilitate text
generation. Multiple methods have been explored to improve the encoder-decoder architecture
(e.g., attention mechanism, copy and pointing mechanism).

Based on the first challenge, the main content of our survey is divided into two parts: (1) gen-
eral methods of integrating knowledge into text generation (Section 2); (2) specific methods and
applications according to different sources of knowledge enhancement (Sections 3–4). More con-
cretely, since knowledge can be obtained from different sources, we first divide existing knowledge
enhanced text generation work into two categories: internal knowledge enhanced and external
knowledge enhanced text generation. The division of internal and external knowledge is widely
adopted by management science [84], which can be analogous with knowledge enhanced text
generation. Based on the second challenge, we categorize recent knowledge-enhanced text gen-
eration methods evolved from how knowledge is extracted and incorporated into the process of
text generation in each section (named as M1, M2, and etc). Furthermore, we review methods for a
variety of natural language generation applications in each section to help practitioners choose,
learn, and use the methods. In total, we discuss seven mainstream applications presented in more
than 80 papers that were published or released in or after the year of 2016.

As shown in Figure 2, the remainder of this survey is organized as follows. Section 2 presents basic
NLG models and general methods of integrating knowledge into text generation. Sections 3 reviews
internal knowledge-enhanced NLG methods and applications. The internal knowledge is obtained
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from topic, keyword, linguistic features and internal graph structures. Sections 4 reviews external
knowledge-enhanced NLG methods and applications. The external knowledge sources include
knowledge bases, knowledge graphs, and grounded text. Section 5 presents knowledge-enhanced
NLG benchmarks. Section 6 discusses future work and concludes the survey.

2 GENERAL METHODS OF INTEGRATING KNOWLEDGE INTO NLG
2.1 The Basic Text Generation Models
Early encoder-decoder frameworks are often based on recurrent neural network (RNN) such as RNN-
Seq2Seq [112]. Convolutional neural network (CNN) based encoder-decoder [36] and Transformer
encoder-decoder [117] have been increasingly widely used. From a probabilistic perspective, the
encoder-decoder frameworks learn the conditional distribution over a variable length sequence
conditioned on yet another variable length sequence:

𝑃 (𝑌 |𝑋 ) = 𝑃 (𝑦1, · · · , 𝑦𝑚 |𝑥1, · · · , 𝑥𝑛) =
𝑚∏
𝑡=1

𝑝 (𝑦𝑡 |𝑋,𝑦1, · · · , 𝑦𝑡−1) . (1)

Encoder. The encoder learns to encode a variable length sequence into a fixed length vector
representation. RNN encoder reads the input sentence 𝑋 sequentially. CNN encoder performs con-
volutional operations on a word and its surrounding word(s) in a sequential window. Transformer
encoder eschews recurrence and instead relying entirely on the self-attention mechanism to draw
global dependencies between different tokens in the input 𝑋 . We denote them uniformly as:

(h1,h2, · · · ,h𝑛) = Encoder(e(𝑥1), e(𝑥2), · · · , e(𝑥𝑛)), (2)

where e(𝑥𝑖 ) is the word embedding of word 𝑥𝑖 , h𝑖 is the contextualized hidden representation of 𝑥𝑖 .
Decoder. The decoder is to decode a given fixed length vector representation into a variable

length sequence [112]. Specially, the decoder generates an output sequence one token at each time
step. At each step the model is auto-regressive, consuming the previously generated tokens as
additional input when generating the next token. Formally, the decoding function is represented as:

s𝑡 = Decoder(s𝑡−1, e(𝑦𝑡−1)), (3)
𝑝 (𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, · · · , 𝑦1) = Readout(s𝑡 ), (4)

where Readout(·) is a nonlinear multi-layered function that outputs the probability of 𝑦𝑡 .
Optimization. A generation process is regarded as a sequential multi-label classification problem.

It can be directly optimized by the negative log likelihood (NLL) loss. Therefore, the objective of a
text generation model via maximum likelihood estimation (MLE) is formulated as:

L𝑁𝐿𝐿 (\ ) = − log𝑝\ (𝑌 |𝑋 ) = −
𝑚∑
𝑡=1

log (𝑝\ (𝑦𝑡 |𝑦<𝑡 , 𝑋 )) . (5)

2.2 Knowledge-enhanced Model Architectures
The most popular idea of incorporating knowledge is designing specialized architectures of text
generation models that can reflect the particular type of knowledge. In the context of neural net-
works, several general neural architectures are widely used and customized to bake the knowledge
about the problems being tackled into the models.

2.2.1 Attention Mechanism. It is useful to capture the weight of each time step in both encoder
and decoder [3]. During the decoding phase, the context vector c𝑡 is added, so the hidden state s𝑡 is:

s𝑡 = Decoder(s𝑡−1, e(𝑦𝑡−1), c𝑡 ). (6)
Unlike Eq.(3), here the probability is conditioned on the distinct context vector c𝑡 for target word 𝑦𝑡 ,
and c𝑡 depends on a sequence of hidden statesH = {h𝑖 }𝑛𝑖=1 that were mapped from input sequence.
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Table 1. NLG methods that incorporates knowledge attention (§2.2.1) and knowledge mode (§2.2.2).
Topic Keyword Knowledge base Knowledge graph Grounded text

Knowledge-related attention [129, 134, 147] [65, 66, 69] [31, 45] [43, 51, 146, 153] [8, 83]
Knowledge-related mode [134] [66] [45] [54, 146, 153] [83, 103]
Knowledge-related memory [31, 152] - [78, 130] [139] [58]

In RNN-Seq2Seq decoder, the c𝑡 is computed as a weighted sum of {h𝑖 }𝑛𝑖=1:

c𝑡 =
𝑛∑
𝑖=1

𝛼𝑡𝑖h𝑖 , where 𝛼𝑡𝑖 =
exp([ (s𝑡−1,h𝑖 ))∑𝑛
𝑘=1 exp([ (s𝑡−1,h𝑘 ))

, (7)

where [ (·) is parametrized as a multi-layer perception to compute a soft alignment. [ (·) enables the
gradient of loss function to be backpropagated. There are six alternatives for the [ (·) function (see
Table 2 in [34]). The probability 𝛼𝑡𝑖 reflects the importance of the hidden state of input sequence in
presence of the previous hidden state s𝑡−1 for deciding the next hidden state.

In Transformer decoder, on top of the two sub-layers in the encoder, the decoder inserts a third
sub-layer, which performs multi-head attention over the output of the encoder stack H. Efficient
implementations of the transformer use the cached history matrix S𝑡 to generate next token. To
compare with RNN-Seq2Seq, we summarize the Transformer decoder using recurrent notation:

S𝑡 = Transformer-Decoder(S𝑡−1, e(𝑦𝑡−1),H), (8)

where S𝑡 = [(K(1)𝑡 ,V(1)𝑡 ), · · · , (K
(𝑙)
𝑡 ,V(𝑙)𝑡 )], where (K

(𝑖)
𝑡 ,V(𝑖)𝑡 ) corresponds to the key-value pairs

from the 𝑖-th layer generated at all time-steps from 0 to 𝑡 . Instead of noting a specific name, we
will use Encoder(·) and Decoder(·) to represent encoder and decoder in the following sections.

Knowledge-related attention. Attention mechanism has been widely used to incorporate knowl-
edge representation in recent knowledge-enhanced NLG work. The general idea is to learn a
knowledge-aware context vector (denoted as c̃𝑡 ) by combining both hidden context vector (c𝑡 )
and knowledge context vector (denoted as c𝐾𝑡 ) into decoder update, such as c̃𝑡 = 𝑓𝑚𝑙𝑝 (c𝑡 ⊕ c𝐾𝑡 ).
The knowledge context vector (c𝐾𝑡 ) calculates attentions over knowledge representations (e.g.,
topic vectors, node vectors in knowledge graph). Table 1 summarizes a variety of knowledge
attentions, including keyword attention [65, 66, 69], topic attention [75, 129, 134, 147], knowledge
base attention [31, 45], knowledge graph attention [51, 60, 146], and grounded text attention [8, 83].

2.2.2 Copy and PointingMechanisms. CopyNet and Pointer-generator (PG) are used to choose
subsequences in the input sequence and put them at proper places in the output sequence.
CopyNet and PG have a differentiable network architecture [40]. They can be easily trained

in an end-to-end manner. In CopyNet and PG, the probability of generating a target token is a
combination of the probabilities of two modes, generate-mode and copy-mode. First, they represent
unique tokens in the global vocabularyV and the vocabulary of source sequenceV𝑋 . They build
an extended vocabularyVext = V ∪V𝑋 ∪ {unk}. The difference between CopyNet and PG is the
way to calculate distribution over the extended vocabulary. CopyNet calculates the distribution by

𝑝 (𝑦𝑡 ) = 𝑝𝑔 (𝑦𝑡 ) + 𝑝𝑐 (𝑦𝑡 ), (9)
where 𝑝𝑔 (·|·) and 𝑝𝑐 (·|·) stand for the probability of generate-mode and copy-mode. Differently, PG
explicitly calculates a switch probability 𝑝𝑚 between generate-mode and copy-mode. It recycles the
attention distribution to serve as the copy distribution. The distribution overVext is calculated by

𝑝 (𝑦𝑡 ) = 𝑝𝑚 (g) · 𝑝𝑔 (𝑦𝑡 ) + (1 − 𝑝𝑚 (g)) · 𝑝𝑐 (𝑦𝑡 ), (10)
where 𝑝𝑚 (g) indicates the probability of choosing generate-mode, which is obtained by a nonlinear
multi-layered (MLP) function. Importantly, CopyNet and pointer-generator network have been
used as the base module for a lot of knowledge-enhanced NLG work.
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Knowledge-related mode. A knowledge-related mode chooses subsequences in the obtained
knowledge and puts them at proper places in the output sequence. It helps NLG models to generate
words that are not included in the global vocabulary (V) and input sequence (V𝑋 ). For example,
by adding the model of knowledge base, the extended vocabulary (V𝑒𝑥𝑡 ) adds entities and relations
from the knowledge base, i.e.,V𝑒𝑥𝑡 = V +V𝑋 + V𝐾𝐵 . The probability of generating a target token
is a combination of the probabilities of three modes: generate-mode, copy-mode and knowledge
base-mode. Therefore, knowledge-related mode is not only capable of regular generation of words
but also operation of producing appropriate subsequences in knowledge sources. Table 1 summa-
rizes different kinds of knowledge-related modes such as topic mode [134], keyword mode [66],
knowledge base mode [45], knowledge graph mode [146, 153], and background mode [83, 103].

2.2.3 Memory Network. Memory networks (MemNNs) are recurrent attention models over
a possibly large external memory [111]. They write external memories into several embedding
matrices, and use query (generally speaking, the input sequence 𝑋 ) vectors to read memories
repeatedly. This approach encodes long dialog history and memorize external information.
Given an input set {𝑚1, · · · ,𝑚𝑖 } to be stored in memory. The memories of MemNN are repre-

sented by a set of trainable embedding matrices C = {C1, · · · ,C𝐾+1}, where each C𝑘 maps tokens
to vectors, and a query (i.e., input sequence) vector h𝑘𝑋 is used as a reading head. The model loops
over 𝐾 hops and it computes the attention weights at hop 𝑘 for each memory𝑚𝑖 using:

p𝑘𝑖 = softmax((h𝑘𝑋 )⊤C𝑘𝑖 ), (11)
where C𝑘𝑖 = C𝑘 (𝑚𝑖 ) is the memory content in 𝑖-th position, i.e., mapping𝑚𝑖 into a memory vector.
Here, p𝑘 is a soft memory selector that decides the memory relevance with respect to the query
vector h𝑘𝑋 . Then, the model reads out the memory o𝑘 by the weighted sum over C𝑘+1,

o𝑘 =
∑
𝑖

p𝑘𝑖 C
𝑘+1
𝑖 . (12)

Then, the query vector is updated for the next hop by using h𝑘+1𝑋 = h𝑘𝑋 + o𝑘 . The result from the
encoding step is the memory vector o𝐾 and becomes the input for the decoding step.

Knowledge-related memory. Memory augmented encoder-decoder framework has achieved
promising progress for many NLG tasks. For example, MemNNs are widely used for encoding
dialogue history in task-oriented dialogue systems [102, 130]. Such frameworks enable a decoder
to retrieve information from a memory during generation. Recent work explored to model external
knowledge with memory network such as knowledge base [78, 139] and topic [31, 152].

2.2.4 Graph Network. Graph network captures the dependence of graphs via message pass-
ing between the nodes of graphs. Graph neural networks (GNNs) [133] and graph-to-sequence
(Graph2Seq) [6] potentiate to bridge up the gap between graph representation learning and text
generation. Knowledge graph, dependency graph, and other graph structures can be integrated
into text generation through various GNN algorithms. Here we denote a graph as G = (U, E),
whereU is the set of entity nodes and E is the set of (typed) edges. Modern GNNs typically follow
a neighborhood aggregation approach, which iteratively updates the representation of a node by
aggregating information from its neighboring nodes and edges. After 𝑘 iterations of aggregation, a
node representation captures the structural information within its 𝑘-hop neighborhood. Formally,
the 𝑘-th layer of a node 𝑢 ∈ U is:

u(𝑘) = Combine𝑘 (u(𝑘−1) ,Aggregate𝑘 (
{
(u(𝑘−1)
𝑖

, e(𝑘−1)
𝑖 𝑗

,u(𝑘−1)
𝑗
) : ∀(𝑢𝑖 , 𝑒𝑖 𝑗 , 𝑢 𝑗 ) ∈ N (𝑢)

}
)), (13)

where N(𝑢) = {(𝑢𝑖 , 𝑒𝑖 𝑗 , 𝑢 𝑗 ) ∈ E|𝑢𝑖 = 𝑢 or 𝑢 𝑗 = 𝑢} denotes the set of edges containing node 𝑢, u(𝑘)

and e(𝑘)
𝑖 𝑗

are feature vectors of a node 𝑢 and the edge between 𝑢𝑖 and 𝑢 𝑗 at the 𝑘-th iteration/layer.
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The choice of Aggregate(·) and Combine(·) in GNNs is crucial. A number of architectures for
Aggregate(·) have been proposed in different GNN works such as GAT [118]. Meanwhile, the
Aggregate(·) function used in labeled graphs (e.g., a knowledge graph) is often taken as those
GNNs for modeling relational graphs [104]. To obtain the representation of graph G (denoted as
h𝐺 ), the Readout(·) function (either a simple permutation invariant function or sophisticated
graph-level pooling function) pools node features from the final iteration 𝐾 ,

h𝐺 = Readout(
{
u(𝐾) : 𝑢 ∈ U

}
). (14)

Applications. Graph network has been commonly used in integrating knowledge in graph struc-
ture such as knowledge graph and dependency graph. Graph attention network [118] can be
combined with sequence attention and jointly optimized [146, 153]. We will introduce different
graph structure knowledge in subsequent sections such as knowledge graph (Section 4.2), depen-
dency graph (Section 3.3.2-3.3.3), and open knowledge graph (OpenKG) (Section 3.4).

2.2.5 Pre-trained Language Models. Pre-trained language models (PLMs) aims to learn uni-
versal language representation by conducting self-supervised training on large-scale unlabeled
corpora. Recently, substantial PLMs such as BERT [22] and T5 [100] have achieved remarkable
performance in various NLP downstream tasks. However, these PLMs suffer from two issues when
performing on knowledge-intensive tasks. First, these models struggle to grasp structured world
knowledge, such as concepts and relations, which are very important in language understanding.
For example, BERT cannot deliver great performance on many commonsense reasoning and QA
tasks, in which many of the concepts are directly linked on commonsense knowledge graphs [141].
Second, due to the domain discrepancy between pre-training and fine-tuning, these models do not
perform well on domain-specific tasks. For example, BERT can not give full play to its value when
dealing with electronic medical record analysis task in the medical field [74].
Recently, a lot of efforts have been made on investigating how to integrate knowledge into

PLMs [42, 74, 76, 135, 141, 155]. Specifically, we will introduce some PLMs designed for NLG
tasks. Overall, these approaches can be grouped into two categories: The first one is to explicitly
inject entity representation into PLMs, where the representations is pre-computed from external
sources [76, 150]. For example, KG-BART encoded the graph structure of KGs with knowledge
embedding algorithms like TransE [10], and then took the informative entity embeddings as
auxiliary input [76]. However, the method of explicitly injecting entity representation into PLMs
has been argued that the embedding vectors of words in text and entities in KG are obtained in
separate ways, making their vector-space inconsistent [74]. The second one is to implicitly modeling
knowledge information into PLMs by performing knowledge-related tasks, such as concept order
recovering [155], entity category prediction [141]. For example, CALM proposed a novel contrastive
objective for packing more commonsense knowledge into the parameters, and jointly pre-trained
both generative and contrastive objectives for enhancing commonsense NLG tasks [155].

2.3 Knowledge-enhanced Learning and Inference
Besides specialized model architectures, one common way of injecting knowledge to generation
models is through the supervised knowledge learning. For example, one can encode knowledge into
the objective function that guides the model training to acquire desired model behaviors [24, 58].
Such approaches enjoy the flexibility of integrating diverse types of knowledge by expressing them
as certain forms of objectives. In general, knowledge-enhanced learning is agnostic to the model
architecture, and can be combined with the aforementioned architectures.

2.3.1 Learning with knowledge-related tasks. One could devise learning tasks informed by
the knowledge so that the model is trained to acquire the knowledge information.
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Fig. 3. Incorporating knowledge into text generation by treating knowledge as the target. The first category
of methods (left) combine knowledge-related tasks as auxiliary into the text generation task, resulting in
a multi-task learning setting. The second category of methods (right) create weakly-supervised labels from
knowledge, enforcing the relevancy between the knowledge and the target sequence.

Knowledge as target. Themethods can be mainly divided into two categories as shown in Figure
3. The first category of knowledge-related tasks creates learning targets based on the knowledge,
and the model is trained to recover the targets. These tasks can be combined as auxiliary tasks with
the text generation task, resulting in a multi-task learning setting. For example, knowledge loss is
defined as the cross entropy between the predicted and true knowledge sentences, and it is combined
with the standard conversation generation loss to enhance grounded conversation [24, 58]. Similar
tasks include keyword extraction loss [66], template re-ranking loss [12, 124], link prediction loss
on knowledge graph [54], path reasoning loss [77], mode loss [132, 153], bag-of-word (BOW)
loss [70, 138], etc. The second category of methods directly derive the text generation targets
from the knowledge, and use those (typically noisy) targets as supervisions in the standard text
generation task. The approach is called weakly-supervised learning. Weakly-supervised learning
enforces the relevancy between the knowledge and the target sequence. For example, in the problem
of aspect based summarization, the work [113] automatically creates target summaries based on
external knowledge bases, which are used to train the summarization model in a supervised manner.

Knowledge as condition. The second way of devising knowledge-related tasks is to augment
the text generation task by conditioning the generation on the knowledge. That is, the goal is
to learn a function 𝑝\ (𝑌 |𝑋,𝐾), where 𝑋 is the input sequence, 𝑌 is the target text and 𝐾 is the
knowledge. Generally, the knowledge 𝐾 is first given externally (e.g., style, emotion) or retrieved
from external resources (e.g., facts from knowledge base, a document from Wikipedia) or extracted
from the given input text (e.g., keywords, topic words). Second, a conditional text generation model
is used to incorporate knowledge and generate target output sequence. In practice, knowledge is
often remedied by soft enforcing algorithms such as attention mechanism [3] and copy/pointing
mechanism [40, 105]. Regarding knowledge as condition is widely used in knowledge-enhanced
text generation. For examples, work has been done in making personalized dialogue response by
taking account of persona [149] and emotion [152], controlling various aspects of the response
such as politeness [93], grounding the responses in external source of knowledge [24, 39, 153] and
generating topic-coherent sequence [114, 138]. Besides, using variational autoencoder (VAE) to
enforce the generation process conditioned on knowledge is one popular approach to unsupervised
NLG. By manipulating latent space for certain attributes, such as topic [127] and style [47], the
output sequence can be generated with desired attributes without supervising with parallel data.
2.3.2 Learning with knowledge constraints. Instead of creating training objectives in stan-
dalone tasks that encapsulate knowledge, another paradigm of knowledge-enhanced learning is to
treat the knowledge as the constraints to regularize the text generation training objective.
The posterior regularization (PR) framework was proposed to restrict the space of the model

posterior on unlabeled data as a way to guide the model towards desired behavior [32, 158]. PR
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has been used as a principled framework to impose knowledge constraints on probabilistic models
(including deep networks) in general [48, 148]. PR augments any regular training objective L(\ )
(e.g., negative log-likelihood, as in Eq.(5)) with a constraint term to encode relevant knowledge.
Formally, denote the constraint function as 𝑓 (𝑋,𝑌 ) ∈ R such that a higher 𝑓 (𝑋,𝑌 ) value indicates
a better generated sequence 𝑌 that incorporates the knowledge. PR introduces an auxiliary distri-
bution 𝑞(𝑌 |𝑋 ), and imposes the constraint on 𝑞 by encouraging a large expected 𝑓 (𝑋,𝑌 ) value:
E𝑞 [𝑓 (𝑋,𝑌 )]. Meanwhile, the model 𝑝\ is encouraged to stay close to 𝑞 through a KL divergence
term. The learning problem is thus a constrained optimization:

max
\,𝑞
L(\ ) − KL(𝑞(𝑌 |𝑋 ) | |𝑝\ (𝑌 |𝑋 )) + b (15)

𝑠 .𝑡 . E𝑞 [𝑓 (𝑋,𝑌 )] > b, (16)

where b is the slack variable. The PR framework is also related to other constraint-driven learning
methods [13, 79]. We refer readers to [32] for more discussions.
2.3.3 Inference with knowledge constraints. Pre-trained language models leverage large
amounts of unannotated data with a simple log-likelihood training objective. Controlling lan-
guage generation by particular knowledge in a pre-trained model is difficult if we do not modify
the model architecture to allow for external input knowledge or fine-tuning with specific data [21].
Plug and play language model (PPLM) opened up a new way to control language generation with
particular knowledge during inference. At every generation step during inference, the PPLM shifts
the history matrix in the direction of the sum of two gradients: one toward higher log-likelihood
of the attribute 𝑎 under the conditional attribute model 𝑝 (𝑎 |𝑌 ) and the other toward higher log-
likelihood of the unmodified pre-trained generation model 𝑝 (𝑌 |𝑋 ) (e.g., GPT). Specifically, the
attribute model 𝑝 (𝑎 |𝑌 ) makes gradient based updates to ΔS𝑡 as follows:

ΔS𝑡 ← ΔS𝑡 +
∇ΔS𝑡 log𝑝 (𝑎 |S𝑡 + ΔS𝑡 )
| |∇ΔS𝑡 log𝑝 (𝑎 |S𝑡 + ΔS𝑡 ) | |𝛾

, (17)

where 𝛾 is the scaling coefficient for the normalization term; ΔS𝑡 is update of history matrix
S𝑡 (see Eq.(8)) and initialized as zero. The update step is repeated multiple times. Subsequently,
a forward pass through the generation model is performed to obtain the updated S̃𝑡+1 as S̃𝑡+1 =
Decoder((S𝑡+ΔS𝑡 ), e(𝑦𝑡 ),H). The perturbed S̃𝑡+1 is then used to generate a new logit vector. PPLMs
is efficient and flexible to combine differentiable attribute models to steer text generation [99].

3 NLG ENHANCED BY INTERNAL KNOWLEDGE
3.1 NLG Enhanced by Topic
Topic, which can be considered as a representative or compressed form of text, has been often
used to maintain the semantic coherence and guide the NLG process. Topic modeling is a powerful
tool for finding the high-level content of a document collection in the form of latent topics [9]. A
classical topic model, Latent Dirichlet allocation (LDA), has been widely used for inferring a low
dimensional representation that captures latent semantics of words and documents [9]. In LDA,
each topic is defined as a distribution over words and each document as a mixture distribution
over topics. LDA generates words in the documents from topic distribution of document and
word distribution of topic. Recent advances of neural techniques open a new way of learning low
dimensional representations of words from the tasks of word prediction and context prediction,
making neural topic models become a popular choice of finding latent topics from text [11, 44].
As shown in Figure 4, we summarize topic-enhanced NLG methods into three methodologies:

(M1) leverage topic words from generative topic models; (M2) jointly optimize generation model
and CNN topic model; (M3) enhance NLG by neural topic models with variational inference.
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Fig. 4. Three typical methodologies for incorporating topics into NLG. Detailed designs are not included.

Table 2. Natural language generation methods that incorporate topic knowledge in text generation. Since
most of the methods are tested on different tasks and datasets, we only compare the performance between
“w/o topic” setting and “with topic” setting. For evaluation metrics, PPL is short for perplexity (lower is better);
B-4 is short for BLEU-4 (higher is better); R-L is short for ROUGE-L (higher is better).

Task Method Ref. Cat. Framework components Effect of topic modeling
Seq. Enc/Dec Topic model Dataset w/o topic with topic

Dialogue
system

Tp-S2S [134] M1 RNN Seq2Seq LDA topics Baidu Tieba (PPL) 147.0 (PPL) 134.6
PEE [138] M3 RNN Seq2Seq Neural topics PersonaChat (B-4) 2.98 (B-4) 3.56

Machine
translation

Tp-NMT [147] M1 RNN Seq2Seq LDA topics NIST (B-4) 34.76 (B-4) 35.91
BLT-NMT [129] M2 RNN Seq2Seq CNN topics NIST (B-4) 38.97 (B-4) 40.10

Summari
-zation

Tp-CS2S [91] M1 CNN Seq2Seq LDA topics XSum (R-L) 25.23 (R-L) 25.75
TGVAE [127] M3 RNN with VAE Neural topics Gigawords (R-L) 32.13 (R-L) 33.02
VHTM [30] M3 RNN with VAE Neural topics CNN/DM (R-L) 36.73 (R-L) 37.18

Paraphrase TGLM [33] M2 RNN Seq2Seq CNNs topics Yahoo! Ans (PPL) 99.13 (PPL) 88.69
PTA [75] M1 RNN Seq2Seq LDA topics Quora (B-4) 28.76 (B-4) 31.75

3.1.1 M1: Leverage Topic Words from Generative Topic Models. Topics help understand
the semantic meaning of sentences and determine the semantic spectrum to a certain extent. To
enhanced text generation, an effective solution is to first discover topics using generative topic
models (e.g., LDA), and then incorporate the topics representations into neural generation models,
as illustrated in Figure 4(a). In existing work, there are two mainstream methods to represent topics
obtained from generative topic models. The first way is to use the generated topic distributions for
each word (i.e., word distributions over topics) in the input sequence [91, 147]. The second way is to
assign a specific topic to the input sequence, then picks the top-𝑘 wordswith the highest probabilities
under the topic, and use word embeddings (e.g., GloVe) to represent topic words [75, 134]. Explicitly
making use of topic words can bring stronger guidance than topic distributions, but the guidance
may deviate from the target output sequence when some generated topic words are irrelevant.
Zhang et al. proposed the first work of using a topic-informed Seq2Seq model by concatenating the
topic distributions with encoder and decoder hidden states [147]. Xing et al. designed a topic-aware
Seq2Seq model in order to use topic words as prior knowledge to help dialogue generation [134].
3.1.2 M2: Jointly Optimize Generation Model and CNN Topic Model. The LDA models
were separated from the training process of neural generation model and were not able to adapt
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to the diversity of dependencies between input and output sequences. Therefore, the idea of
addressing this issue is to use neural topic models. Convolutional neural networks (CNN) were used
to learn latent topic representations through iterative convolution and pooling operations. There
are growing interests of using the CNNs to map latent topics implicitly into topic vectors that can be
used to enhance text generation tasks [33, 129]. Empirical analyses showed that convolution-based
topic extractors could outperform LDA-based topic models for multiple applications (e.g., dialogue
system, text summarization, machine translation). However, theoretical analysis was missing to
ensure the quality of the topics captured by the convolutions. And their interpretability is not as
satisfactory as the LDA-based topic models.

3.1.3 M3: Enhance NLG by Neural Topic Models with Variational Inference. Neural topic
models can be trained efficiently by backpropagation [11]. In neural topic models, Dirichlet distri-
butions can be employed as the prior to generate the parameters of the multinomial distribution \𝑑
for each document [85]. The generative process of LDA is represented as: (1) \𝑑 ∼ Dirichlet(𝛼);
(2) 𝑡𝑖 ∼ Multinomial(\𝑑 ); (3)𝑤𝑖 ∼ Multinomial(𝛽𝑡𝑖 ), where 𝑑 denotes the bag-of-words representa-
tion of a document, 𝑡𝑖 represents the topic assignment for word 𝑤𝑖 , and 𝛽𝑡𝑖 represents the topic
distribution over words given topic assignment 𝑡𝑖 . However, a directed generative model comes up
against the problem of establishing low variance gradient estimators. Miao et al. parameterized
the multinomial distributions with neural networks and jointly learned the model parameters
via variational inference [85]. They created neural structures for constructing topic distributions
conditioned on a draw from a multivariate Gaussian distribution, represented as \𝑑 ∼ G(`0, 𝜎20 ),
where G(`0, 𝜎20 ) is composed of a neural network conditioned on an isotropic Gaussian N(`0, 𝜎20 ).
Taking a Gaussian prior distribution makes re-parameterization feasible to build an unbiased and
low-variance gradient estimator for the variational distribution [23]. Without conjugacy prior,
the updates of the parameters are derived directly and easily from the variational lower bound.
Formally, a variational lower bound for the document log-likelihood is:

J𝑡𝑜𝑝𝑖𝑐 = E𝑞 (\ |𝑑) [log𝑝 (𝑑 |𝛽, \ )] − KL(𝑞(\ |𝑑) | |𝑝 (\ |`0, 𝜎20 )), (18)
where 𝑞(\ |𝑑) is the variational distribution approximating the true posterior 𝑝 (\ |𝑑). Its lower
bound is estimate by sampling \ from 𝑞(\ |𝑑) = G(\ |` (𝑑), 𝜎2 (𝑑)).
In order to combine neural topic model and neural generation model, the idea is to use the

Variational Auto-Encoder (VAE) [23]. It adopts autoregressive networks (e.g., LSTM) both as the
encoder and decoder. VAE can learn latent codes 𝑧 of texts by reconstructing texts with its decoder.
It assumes that the generation process is controlled by codes in a continuous latent space. This
kind of VAE implementation considers sequential information of texts that can model the linguistic
structure of texts. Wang et al. proposed topic guided variational autoencoder (TGVAE), to draw
latent code 𝑧 from a topic-dependent Gaussian Mixture Prior in order to incorporate the topical
knowledge into latent variables [127]. The topic-dependent Gaussian Mixture Model (GMM) is
defined as: 𝑝 (𝑧 |𝛽, 𝑡) = ∑𝑇

𝑖=1 𝑡𝑖N(` (𝛽𝑖 ), 𝜎2 (𝛽𝑖 )), where 𝑇 is the number of topics, ` (𝑑) and 𝜎2 (𝑑) are
functions implemented by MLP. TGVAE uses bag-of-words as input and embeds an input document
into a topic vector. The topic vector is then used to reconstruct the bag-of-words input, and the
learned topic distribution over words is used to model a topic-dependent prior to generate an output
sequence 𝑌 from conditioned on an input sequence 𝑋 . Therefore, to maximize the log-likelihood
log 𝑝 (𝑌,𝑑 |𝑋 ), a variational objective function is constructed as:

J𝑠𝑒𝑞2𝑠𝑒𝑞 = E𝑞 (𝑧 |𝑋 ) [log𝑝 (𝑌 |𝑋, 𝑧)] − E𝑞 (\ |𝑑) [KL(𝑞(𝑧 |𝑋 ) | |𝑝 (𝑧 |𝛽, \ ))], (19)
where 𝑞(𝑧 |𝑋 ) is variational distributions for 𝑧. The combined object function is given by:

J = J𝑡𝑜𝑝𝑖𝑐 + J𝑠𝑒𝑞2𝑠𝑒𝑞 . (20)
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3.1.4 Discussion and Analysis of Different Methods. For M1, topic models (e.g., LDA) has a
strict probabilistic explanation since the semantic representations of both words and documents
are combined into a unified framework. Besides, topic models can be easily used and integrated
into generation frameworks. For example, topic words can be represented as word embeddings;
topic embeddings can be integrated into the decoding phase through topic attention. However,
LDA models are separated from the training process of generation, so they cannot adapt to the
diversity of dependencies between input and output sequences.
For M2, it is an end-to-end neural framework that simultaneously learns latent topic represen-

tations and generates output sequences. Convolutional neural networks (CNN) are often used to
generate the latent topics through iterative convolution and pooling operations. However, theoreti-
cal analysis is missing to ensure the quality of the topics captured by the convolutions. And their
interpretability is not as good as the LDA-based topic models.
For M3, neural topic models combine the advantages of neural networks and probabilistic

topic models. They enable back propagation for joint optimization, contributing to more coherent
topics, and can be scaled to large data sets. Generally, neural topic models can provide better topic
coherence than LDAs [11, 127, 138]. However, neural variational approaches share a same drawback
that topic distribution is assumed to be an isotropic Gaussian, which makes them incapable of
modeling topic correlations. Existing neural topic models assume that the documents should be i.i.d.
to adopt VAE, while they are commonly correlated. The correlations are critical for topic modeling.

3.2 NLG Enhanced by Keywords
Keyword (aka., key phrase, key term) is often referred as a sequence of one or more words, providing
a compact representation of the content of a document. The mainstream methods of keyword
acquisition for documents can be divided into two categories [107]: keyword assignment and
keyword extraction. Keyword assignment means that keywords are chosen from a controlled
vocabulary of terms or predefined taxonomy. Keyword extraction selects the most representative
words explicitly presented in the document, which is independent from any vocabulary. Keyword
extraction techniques (e.g., TF-IDF, TextRank, PMI) have been widely used over decades. Many NLG
tasks can benefit from incorporating such a condensed form of essential content in a document to
maintain the semantic coherence and guide the generation process.

Researchers have developed a great line of keyword-enhanced NLG methods. These methods can
be categorized into two methodologies: (M1) Incorporate keyword assignment into text generation;
(M2) Incorporate keyword extraction into text generation.

3.2.1 M1: Incorporate Keyword Assignment into Text Generation. When assigning a key-
word to an input document, the set of possible keywords is bounded by a pre-defined vocabu-
lary [107]. The keyword assignment is typically implemented by a classifier that maps the input
document to a word in the pre-defined vocabulary [20, 67, 109, 152]. Unfortunately, some NLG sce-
narios do not hold an appropriate pre-defined vocabulary, so keyword assignment cannot be widely
used to enhance NLG tasks. One applicable scenario is to use a pre-determined domain specific
vocabulary to maintain relevance between the input and the output sequence [20]. Another scenario
is to generate dialogue with specific attributes such as persona [108, 138], emotion [67, 109, 152].

M1.1: Adding assigned keyword into the decoder. A straightforward method of keyword
assignment is to assign the words from pre-defined vocabulary and use them as the keywords [108,
138]. Sometimes, the input sequence does not have an explicit keyword, but we can find one from
the pre-defined vocabulary. For example, a dialogue utterance “If you had stopped him that day,
things would have been different.” expresses sadness but it does not have the word “sad.” To address
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Table 3. Natural language generation methods that incorporate keyword in text generation.

(a) (M1) Descriptions and quantitative comparisons between three methods for emotional dialogue systems.

Task Method Ref. Assignment method Experiments on NLPCC dataset
BLEU D-1/D-2 Emotion w/s

Dialogue
system

Seq2Seq [3] Seq2Seq attention without using keywords 1.50 0.38/1.20 33.5/37.1
E-SCBA [67] MLP classifier to 7 emotions (categories) 1.69 0.54/4.84 72.0/51.2
EmoChat [152] E-SCBA + two memory modules for decoding 1.68 0.90/7.35 76.5/58.0
EmoDS [109] MLP classifier after decoding (discriminator) 1.73 1.13/8.67 81.0/68.7

(b) (M2) As most methods are tested on different tasks and datasets, we only compare the performance
between “w/o keyword” setting and “with keyword” setting. Besides, HM is short for human evaluation.

Task Method Ref. Extraction Keyword Effect of keyword
method labels Dataset w/o keyword with keyword

Summari-
zation

KIGN [65] TextRank Unsupervised CNN/DM (R-2) 15.66 (R-2) 17.12
Gigaword (R-2) 23.61 (R-2) 23.93

ComGen [69] PMI and TFIDF Unsupervised Tencent (HM) 5.77 (HM) 7.19
KGAS [66] BiLSTM-Softmax w(𝑋 ) ∩w(𝑌 ) Gigaword (R-2) 23.61 (R-2) 25.06

Question
generation

Selector [19] BiLSTM-Softmax w(𝑋 ) ∩w(𝑌 ) SQuAD (B-4) 14.72 (B-4) 15.87
Prior [128] BiLSTM-Softmax w(𝑋 ) ∩w(𝑌 ) SQuAD (B-4) 14.72 (B-4) 15.34

this issue, Li et al. propose a method to predict an emotion category by fitting the sum of hidden
states from encoder into a classifier [67]. Then, the response will be generated with the guidance
of the emotion category. In order to dynamically track how much the emotion is expressed in the
generated sequence, Zhou et al. propose a memory module to capture the emotion dynamics during
decoding [152]. Each category is initialized with an emotion state vector before the decoding phase
starts. At each step, the emotion state decays by a certain amount. Once the decoding process is
completed, the emotion state decays to zero, indicating that the emotion is completely expressed.

M1.2: Assigning keyword for generated sequence. As mentioned in [109], explicitly incorpo-
rating emotional keywords suffers from expressing a certain emotion overwhelmingly. Instead,
Song et al. propose to increase the intensity of the emotional experiences not by using emotional
words explicitly, but by implicitly combining neutral words in distinct ways on emotion [109].
Specifically, they use an emotion classifier to build a sentence-level emotion discriminator, which
helps to recognize the responses that express a certain emotion but not explicitly contain too many
literal emotional words. The discriminator is connected to the end of the decoder.
3.2.2 M2: Incorporate Keyword Extraction into Text Generation. Keyword extraction se-
lects salient words from input documents [107]. Recent work has used statistical keyword extraction
techniques (e.g., PMI [69], TextRank [65]), and neural-based keyword extraction techniques (e.g.,
BiLSTM [66]). The process of incorporating extracted keywords into generation is much like the
process discussed in Section 3.2.1. It takes keywords as an additional input into decoder. Recent
work improves encoding phase by adding another sequence encoder to represent keywords [65, 66].
Then, the contextualized keywords representation is fed into the decoder together with input
sequence representation. To advance the keyword extraction, Li et al. propose to use multi-task
learning for training a keyword extractor network and generating summaries [19, 66]. Because both
summarization and keyword extraction aim to select important information from input document,
these two tasks can benefit from sharing parameters to improve the capacity of capturing the gist
of the input text. In practice, they take overlapping words between the input document and the
ground-truth summary as keywords, and adopt a BiLSTM-Softmax as keyword extractor. Similar
idea has also been used in question generation tasks [19, 128]. They use overlapping words between
the input answer context and the ground-truth question as keywords.
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3.2.3 Discussion and Analysis of Different Methods.

Pros and cons. For M1, the primary advantage of keyword assignment is that the quality of
keywords is guaranteed, because irrelevant keywords are not included in the pre-defined vocabulary.
Another advantage is that even if two semantically similar documents do not have common words,
they can still be assigned with the same keyword. However, there are mainly two drawbacks. On
one hand, it is expensive to create and maintain dictionaries in new domains. So, the dictionaries
might not be available. On the other hand, potential keywords occurring in the document would be
unfortunately ignored if they were not in the vocabulary. Therefore, keyword assignment is suitable
for the task that requires specific categories of keywords to guide the generated sentences with
these key information. For example, dialogue systems generate responses with specific attitudes.
ForM2, keyword extraction selects the most representative words explicitly presented in the

document, which is independent from any vocabulary. It is easy to use but has two drawbacks. First,
it cannot guarantee consistency because similar documents may still be represented by different
keywords if they do not share the same set of words. Second, when an input document does not
have a proper representative word, and unfortunately, the keyword extractor selects an irrelevant
word from the document as a keyword, this wrong guidance will mislead the generation. Therefore,
keyword extraction is suitable for the task that the output sequence needs to keep important
information in the input sequence such as document summarization and paraphrase.

Quantitative analysis. Table 3 summarizes tasks and datasets used in keyword-enhanced NLG
work. Comparing with keyword-enhanced methods (E-SCBA [67]) and the basic Seq2Seq attention
model, keyword-enhanced methods can greatly improve both generation quality (evaluated by
BLEU) and emotional expression (evaluated by emotion-w and emotion-s) on the NLPCC dataset.
Besides, as shown in Table 3(a), EmoDS [109] achieved the best performance among three M1
methods, which indicates taking keyword assignment as a discriminant task can make better
improvement than assigning keyword before the sentence decoding. For M2 methods, since most
methods were evaluated on different tasks, we can only compare the performance between “without
using keyword” and “using keyword”. As shown in Table 3(b), leveraging extracted keywords from
input sequence into Seq2Seq model can improve the generation quality on summarization and
question generation tasks. Comparing with KGAS [66] and KIGN [65], we can observe using
BiLSTM-Softmax to extract keyword (a supervised manner by using overlapping words between 𝑋
and 𝑌 as labels) can make better performance than using TextRank (an unsupervised manner).

3.3 NLG Enhanced by Linguistic Features
Feature enriched encoder means that the encoder not only reads the input sequence, but also
incorporates auxiliary hand-crafted features [106, 144, 154]. Linguistic features are themost common
hand-crafted features, such as part-of-speech (POS) tags, dependency parsing, and semantic parsing.
3.3.1 POS tags and NER tags. Part-of-speech tagging (POS) assigns token tags to indicate the
token’s grammatical categories and part of speech such as noun (N), verb (V), adjective (A). Named-
entity recognition (NER) classifies named entities mentioned in unstructured text into pre-defined
categories such as person (P), location (L), organization (O). CoreNLP is the most common used
tool [80]. In spite of homonymy and word formation processes, the same surface word form may
be shared between several word types. Incorporating NER tags and POS tags can detect named
entities and understand input sequence better, hence, further improve NLG [25, 90, 154].

3.3.2 Syntactic dependency graph. Syntactic dependency graph is a directed acyclic graph
representing syntactic relations between words [4]. For example, in the sentence “The monkey eats
a banana”, “monkey” is the subject of the predicate “eats”, and “banana” is the object. Enhancing
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sequence representations by utilizing dependency information captures source long-distance depen-
dency constraints and parent-child relation for different words [1, 4, 14]. In NLG tasks, dependency
information is often modeled in three different ways as follows: (i) linearized representation: lin-
earize dependency graph and then use sequence model to obtain syntax-aware representation [1];
(ii) path-based representation: calculate attention weights based on the linear distance between a
word and the aligned center position, i.e., the greater distance a word to the center position on the
dependency graph is, the smaller contribution of the word to the context vector is [14]; and (iii)
graph-based representation: use GNNs to aggregate information from dependency relations [4].
3.3.3 Semantic dependency graph. Semantic dependency graph represents predicate-argument
relations between content words in a sentence and have various semantic representation schemes
(e.g., DM) based on different annotation systems. Nodes in a semantic dependency graph are
extracted by semantic role labeling (SRL) or dependency parsing, and connected by different
intra-semantic and inter-semantic relations [95]. Since semantic dependency graph introduces a
higher level of information abstraction that captures commonalities between different realizations
of the same underlying predicate-argument structures, it has been widely used to improve text
generation [56, 71, 95]. Jin et al. propose a semantic dependency guided summarization model [56].
They incorporate the semantic dependency graph and the input text by stacking encoders to guide
summary generation process. The stacked encoders consist of a sequence encoder and a graph
encoder, in which the sentence encoder first reads the input text through stacked multi-head
self-attention, and then the graph encoder captures semantic relationships and incorporates the
semantic graph structure into the contextual-level representation.

3.4 NLG Enhanced by Open Knowledge Graphs
For those KGs (e.g., ConceptNet) constructed based on data beyond the input text, we refer them as
external KGs. On the contrary, an internal KG is defined as a KG constructed solely based on the
input text. In this section, we will discuss incorporating internal KG to help NLG [27, 51].

Internal KG plays an important role in understanding the input sequence especially when it is of
great length. By constructing an internal KG intermediary, redundant information can be merged or
discarded, producing a substantially compressed form to represent the input document [27]. Besides,
representations on KGs can produce a structured summary and highlight the proximity of relevant
concepts, when complex events related with the same entity may span multiple sentences [51]. One
of the mainstream methods of constructing an internal KG is using open information extraction
(OpenIE). Unlike traditional information extraction (IE) methods, OpenIE is not limited to a small
set of target entities and relations known in advance, but rather extracts all types of entities and
relations found in input text [92]. In this way, OpenIE facilitates the domain independent discovery
of relations extracted from text and scales to large heterogeneous corpora.

After obtaining an internal KG, the next step is to learn the representation of the internal KG and
integrate it into the generation model. For example, Zhu et al. use a graph attention network (GAT)
to obtain the representation of each node, and fuse that into a transformer-based encoder-decoder
architecture via attention [157]. Their method generates abstractive summaries with higher factual
correctness. Huang et al. extend by first encoding each paragraph as a sub-KG using GAT, and then
connecting all sub-KGs with a Bi-LSTM [51]. This process models topic transitions and recurrences,
which enables the identification of notable content, thus benefiting summarization.

4 NLG ENHANCED BY EXTERNAL KNOWLEDGE
4.1 NLG Enhanced by Knowledge Base
One of the biggest challenges in NLG is to discover the dependencies of elements within a sequence
and/or across input and output sequences. The dependencies are actually various types of knowledge
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Fig. 5. The left figure demonstrates retrieving relevant triples, then using them for generation; the right figure
demonstrate using KL to measure the proximity between prior and posterior distribution.

such as commonsense, factual events, and semantic relationship. Knowledge base (KB) is a popular
technology that collects, stores, and manages large-scale information for knowledge-based systems
like search engines. It has a great number of triples composed of subjects, predicates, and objects.
People also call them “facts” or “factual triplets”. Recently, researchers have been designing methods
to use KB as external knowledge for learning the dependencies easier, faster, and better.

To handle different kinds of relationships between KB and input/output sequences, these methods
can be categorized into two methodologies which is shown in Figure 5: (M1) design supervised
tasks around KB for joint optimization; (M2) enhance incorporation by selecting KB or facts.
4.1.1 M1: Design Supervised Tasks around KB for Joint Optimization. Knowledge bases
(KBs) that acquire, store, and represent factual knowledge can be used to enhance text generation.
However, designing effective incorporation to achieve a desired enhancement is challenging because
a vanilla Seq2Seq often fails to represent discrete isolated concepts though they perform well to
learn smooth shared patterns (e.g., language diversity). To fully utilize the knowledge bases, the
idea is to jointly train neural models on multiple tasks. For example, the target task is answer
sequence generation, and additional tasks include question understanding and fact retrieval in
the KB. Knowledge can be shared across a unified encoder-decoder framework design. Typically,
question understanding and fact retrieval are relevant and useful tasks, because a question could
be parsed to match (e.g., string matching, entity linking, named entity recognition) its subject and
predicate with the components of a fact triple in KB, and the answer is the object of the triple.
KBCopy was the first work to generate responses using factual knowledge bases [26]. During the
generation, KBCopy is able to copy words from the KBs. However, the directly copying relevant
words from KBs is extremely challenging. CoreQA used both copying and retrieving mechanisms to
generate answer sequences with an end-to-end fashion [45]. Specifically, it had a retrieval module to
understand the question and find related facts from the KB. Then, the question and all retrieved facts
are transformed into latent representations by two separate encoders. During the decoding phase,
the integrated representations are fed into the decoder by performing a joint attention on both
input sequence and retrieved facts. Figure 5(a) demonstrates a general pipeline that first retrieves
relevant triples from KBs, then leverages the top-ranked triples into the generation process.
4.1.2 M2: Enhance Incorporation by Selecting KB or Facts in KB. Ideally, the relevance of
the facts is satisfactory with the input and output sequence dependencies, however, it is not always
true in real cases. Lian et al. addressed the issue of selecting relevant facts from KBs based on
retrieval models (e.g. semantic similarity) might not effectively achieve appropriate knowledge
selection [70]. The reason is that different kinds of selected knowledge facts can be used to generate
diverse responses for the same input utterance. Given a specific utterance and response pair, the
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Table 4. M2-based methods can retrieve more precise triples, and further improve the generation performance.

Method Cat. Ref.
Chinese Weibo (large) [132] Chinese Weibo (small) [131]

Entity score Generation score Entity score Generation score
Match Recall BLEU-2 Dist-2 Match Recall BLEU-2 Dist-2

GenDS M1 [159] 0.97 0.37 3.42 4.27 0.75 0.26 2.09 1.66
CCM M1 [153] 1.09 0.37 4.75 4.87 0.99 0.28 3.26 2.59
ConKADI M2 [131] - - - - 1.48 0.38 5.06 23.93
TaFact M2 [132] 1.81 0.47 5.07 23.56 - - - -

posterior distribution over knowledge base from both the utterance and the response may provide
extra guidance on knowledge selection. The challenge lies in the discrepancy between the prior
and posterior distributions. Specifically, the model learns to select effective knowledge only based
on the prior distribution, so it is hard to obtain the correct posterior distribution during inference.
To tackle this issue, the work of Lian et al. [70] and Wu et al. [132] (shown in Figure 5(b))

approximated the posterior distribution using the prior distribution in order to select appropriate
knowledge even without posterior information. They introduced an auxiliary loss, called Kullback-
Leibler divergence loss (KLDivLoss), to measure the proximity between the prior distribution and
the posterior distribution. The KLDivLoss is defined as follows:

LKLDiv (\ ) =
𝑁∑
𝑖=1

𝑝 (𝑘 = 𝑘𝑖 |𝑋,𝑌 ) log
𝑝 (𝑘 = 𝑘𝑖 |𝑋,𝑌 )
𝑝 (𝑘 = 𝑘𝑖 |𝑋 )

, (21)

where 𝑁 is the number of retrieved facts. When minimizing KLDivLoss, the posterior distribution
𝑝 (𝑘 |𝑋,𝑌 ) can be regarded as labels to apply the prior distribution 𝑝 (𝑘 |𝑋 ) for approximating
𝑝 (𝑘 |𝑋,𝑌 ). Finally, the total loss is written as the sum of the KLDivLoss and NLL (generation) loss.
4.1.3 Discussion and Analysis of Different Methods. The relevance between triples in KBs
and input sequences plays a central role in discovering knowledge for sequence generation. Meth-
ods in M1 typically follows the process that parses input sequence, retrieves relevant facts, and
subsequently, a knowledge-aware output can be generated based on the input sequence and previ-
ously retrieved facts. Even though the improvement by modeling KB with memory network [78],
existing KG-enhanced methods still suffer from effectively selecting precise triples.

Methods of M2 improve the selection of facts, in which the ground-truth responses used as the
posterior context knowledge to supervise the training of the prior fact probability distribution. Wu
et al. used exact match and recall to measure whether the retrieved triples is used to generate the
target outputs [131]. Table 4 shows the entity recall scores of M1-based methods and M2-based
methods reported in [131, 132]. We observe that compared to M1-based methods, M2-based methods
can greatly improve the accuracy of triple retrieval, as well as the generation quality.
There are still remaining challenges in KB-enhanced methods. One is that retrieved facts may

contain noisy information, making the generation unstable [58]. This problem is extremely harmful
in NLG tasks, e.g., KB-based question answering and task-oriented dialogue system, since the
information in KB is usually the expected entities in the response.

4.2 NLG Enhanced by Knowledge Graph
Knowledge graph (KG), as a type of structured human knowledge, has attracted great attention
from both academia and industry. A KG is a structured representation of facts (a.k.a. knowledge
triplets) consisting of entities∗, relations, and semantic descriptions [55]. The terms of “knowledge
base” and “knowledge graph” can be interchangeably used, but they do not have to be synonymous.
The knowledge graph is organized as a graph, so the connections between entities are first-class
∗For brevity, we use “entities” to denote both entities (e.g., prince) and concepts (e.g., musician) throughout the paper.
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citizens in it. In the KG, people can easily traverse links to discover how entities are interconnected
to express certain knowledge. Recent advances in artificial intelligence research have demonstrated
the effectiveness of using KGs in various applications like recommendation systems [122].
Compared with separate, independent knowledge triplets, knowledge graph provides compre-

hensive and rich entity features and relations for models to overcome the influence of the data
distribution and enhance its robustness. Therefore, node embedding and relational path have played
important roles in various text generation tasks. The corresponding techniques are knowledge
graph embedding (KGE) [126] and path-based knowledge graph reasoning [15]. Furthermore, it
has been possible to encode multi-hop and high-order relations in KGs using the emerging graph
neural network (GNN) [133] and graph-to-sequence (Graph2Seq) frameworks [6].

Definition 4.1 (Knowledge graph (KG)). A knowledge graph (KG) is a directed and multi-relational
graph composed of entities and relations which are regarded as nodes and different types of edges.
Formally, a KG is defined as G = (U, E,R), whereU is the set of entity nodes and E ⊆ U ×R ×U
is the set of typed edges between nodes inU with a certain relation in the relation schema R.

Then given the input/output sequences in the text generation task, a subgraph of the KG which
is associated with the sequences can be defined as below.
Definition 4.2 (Sequence-associated K-hop subgraph). A sequence-associated K-hop subgraph

is defined as G𝑠𝑢𝑏 = (U𝑠𝑢𝑏, E𝑠𝑢𝑏,R), where U𝑠𝑢𝑏 is the union of the set of entity nodes mapped
through an entity linking function𝜓 : U×X → U𝑠𝑢𝑏 and their neighbors within K-hops. Similarly,
E𝑠𝑢𝑏 ⊆ U𝑠𝑢𝑏 × R ×U𝑠𝑢𝑏 is the set of typed edges between nodes inU𝑠𝑢𝑏 .

Sequence-associated subgraph provides a graphical form of the task data (i.e., sequences) and
thus enables the integration of KGs and the sequences into graph algorithms.
Many methods have been proposed to learn the relationship between KG semantics and in-

put/output sequences. They can be categorized into four methodologies as shown in Figure 6: (M1)
incorporate knowledge graph embeddings into language generation; (M2) transfer knowledge into
language model with triplet information; (M3) perform reasoning over knowledge graph via path
finding strategies; and (M4) improve the graph embeddings with graph neural networks.

4.2.1 M1: Incorporate KnowledgeGraph Embeddings into LanguageGeneration. Knowl-
edge graph embedding (KGE) techniques learn node embedding from a KG [126]. KGE aims to
capture the semantic relatedness between entity nodes from their connectivity information (i.e.,
different types of relations) in the KG. The primary idea is to represent entities and relations in a
low-dimensional vector space R𝑑 , where 𝑑 ≪ |U∪R|, to reduce data dimensionality while preserv-
ing the inherent structure of the KG. TransE [10] is the most widely used KGE technique. In TransE,
given a KG edge (𝑢𝑖 , 𝑟 , 𝑢 𝑗 ), the relation is seen as a translation vector r so that the embedded entities
u𝑖 and u𝑗 can be connected with low translation error, namely u𝑖 + r ≈ u𝑗 . For example, we have
−−−−−→
𝑇𝑜𝑘𝑦𝑜 + −−−−−−−−−−−−→𝐼𝑠𝐶𝑎𝑝𝑡𝑖𝑐𝑎𝑙𝑂 𝑓 ≈ −−−−→𝐽𝑎𝑝𝑎𝑛 for the knowledge edge (Tokyo, IsCapticalOf, Japan). As shown
in Figure 6(a), a common strategy of incorporating KGE into NLG is to concatenate the original
word representations (x) with the corresponding entity representations (u) from KGE [146, 153].

4.2.2 M2: Transfer Knowledge into Language Model with Knowledge Triplet Informa-
tion. The vector spaces of entity embeddings (from KGE) and word embeddings (from pre-trained
language models) are usually inconsistent [76]. Beyond a simple concatenation, recent methods
have explored to fine-tune the language models directly on knowledge graph triplets. Guan et al.
transformed the commonsense triplets (in ConceptNet and ATOMIC) into readable sentences using
templates, as illustrated in Figure 6(b). And then the language model (e.g., GPT-2) is fine-tuned on
the transformed sentences to learn the commonsense knowledge to improve text generation.
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Fig. 6. Four typical methodologies for incorporating KG semantics into text generation.

4.2.3 M3: Perform Reasoning over Knowledge Graph via Path Finding Strategies. KGE
learns node representations from one-hop relations through a certain semantic relatedness (e.g.
TransE). However, Xiong et al. argued that an intelligent machine is supposed to be able to conduct
explicit reasoning over relational paths to make multiple inter-related decisions rather than merely
embedding entities in the KGs [136]. Take the QA task an example. The machine performs reasoning
over KGs to handle complex queries that do not have an obvious answer, infer potential answer-
related entities, and generate the corresponding answer. So, the challenge lies in identifying a subset
of desired entities and mentioning them properly in a response [87]. Because the connected entities
usually follow natural conceptual threads, they help generate reasonable and logical answers to
keep conversations engaging and meaningful. As shown in Figure 6(c), path-based methods explore
various patterns of connections among entity nodes such as meta-paths and meta-graphs. Then
they learn from walkable paths on KGs to provide auxiliary guidance for the generation process.
The path finding based methods can be mainly divided into two categories: (1) path ranking based
methods and (2) reinforcement learning (RL) based path finding methods.

M3.1: Path routing and ranking. Path ranking algorithm (PRA) emerges as a promising
method for learning and inferring paths on large KGs [62]. PRA uses random walks to perform
multiple bounded depth-first search processes to find relational paths. Coupled with elastic-net
based learning [160], PRA picks plausible paths and prunes non-ideal, albeit factually correct
KG paths. For example, Tuan et al. proposed a neural conversation model with PRA on dynamic
knowledge graphs [116]. In the decoding phase, it selected an output from two networks, a general
GRU decoder network and a PRA based multi-hop reasoning network, at each time step. Bauer et
al. ranked and filtered paths to ensure both the information quality and variety via a 3-step scoring
strategy: initial node scoring, cumulative node scoring, and path selection [5]. Ji et al. heuristically
pruned the noisy edges between entity nodes and proposed a path routing algorithm to propagate
the edge probability along multi-hop paths to the entity nodes [53].
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M3.2: Reinforcement learning based path finding. Reinforcement learning (RL) based meth-
ods make an agent to perform reasoning to find a path in a continuous space. These methods
incorporate various criteria in their reward functions of path finding, making the path finding
process flexible. Xiong et al. proposed DeepPath, the first work that employed Markov decision
process (MDP) and used RL based approaches to find paths in KGs [136]. Leveraging RL based
path finding for NLG tasks typically consists of two stages [77, 94]. First, they take a sequence
as input, retrieve a starting node 𝑢0 on G, then perform multi-hop graph reasoning, and finally
arrive at a target node 𝑢𝑘 that incorporates the knowledge for output sequence generation. Second,
they represent the sequence 𝑋 and selected path Φ𝑘 (𝑢0, 𝑢𝑘 ) through two separate encoders. They
decode a sequence with multi-source attentions on the input sequence and selected path. Path-based
knowledge graph reasoning converts the graph structure of a KG into a linear path structure that
can be easily represented by sequence encoders (e.g, RNN) [27, 94, 116]. For example, Niu et al.
encoded selected path and input sequence with two separate RNNs and generated sequence with
a general attention-based RNN decoder [94]. To enhance the RL process, Xu et al. proposed six
reward functions for training an agent in the reinforcement learning process. For example, the
functions looked for accurate arrival at the target node as well as the shortest path between the
start and target node, i.e., minimize the length of the selected path Φ𝑘 (𝑢0, 𝑢𝑘 ) [137].

4.2.4 M4: Improve the Graph Embeddings with Graph Neural Networks. The contexts
surrounding relevant entities on KGs play an important role in understanding the entities and
generating proper text about their interactions [43, 60]. For example, in scientific writing, it is
important to consider the neighboring nodes of relevant concepts on a taxonomy and/or the
global context of a scientific knowledge graph [60]. However, neither KGE nor relational path
could fully represent such information. Graph-based representations aim at aggregating the con-
text/neighboring information on graph data; and recent advances of GNN models demonstrate a
promising advancement in graph-based representation learning [133]. In order to improve text
generation, graph-to-sequence (Graph2Seq) models encode the structural information of the KG in
a neural encoder-decoder architecture [6]. Since then, GNNs have been playing an important role
in improving the NLG models. They have been applied to both encoding and decoding phases.

Learning KG-aware input text representation with GNNs (Encoding). For encoding phase,
a general process of leveraging GNNs for incorporating KG is to augment semantics of a word
in the input text by combining with the vector of the corresponding entity node vector to the
word on the KG [43, 51, 145, 146, 153]. A pre-defined entity linking function𝜓 : U × X → U𝑠𝑢𝑏
maps words in the input sequence to entity nodes on the KG. Given an input sequence, all the
linked entities and their neighbors within 𝐾-hops compose a sequence-associated K-hop subgraph
G𝑠𝑢𝑏 (formally defined in Definition 4.2). For each entity node in G𝑠𝑢𝑏 , it uses the KG structure as
well as entity and edge features (e.g., semantic description if available) to learn a representation
vector u. Specifically, a GNN model follows a neighborhood aggregation approach that iteratively
updates the representation of a node by aggregating information from its neighboring nodes and
edges. After 𝑘 iterations of aggregation, the node representation captures the structural information
within its 𝑘-hop neighborhood. Formally, the 𝑘-th layer of a node 𝑢 ∈ U𝑠𝑢𝑏 is:

u(𝑘) = Combine𝑘 (u(𝑘−1) ,Aggregate𝑘 (
{
(u(𝑘−1)
𝑖

, e(𝑘−1)
𝑖 𝑗

,u(𝑘−1)
𝑗
) : ∀(𝑢𝑖 , 𝑒𝑖 𝑗 , 𝑢 𝑗 ) ∈ N (𝑢)

}
)) . (22)

The sub-graph representation h𝑠𝑢𝑏𝐺 is learned thorough a Readout(·) function from all entity node
representations (i.e., h𝑠𝑢𝑏𝐺 = Readout(

{
u(𝑘) , 𝑢 ∈ U𝑠𝑢𝑏

}
). Zhou et al. was the first to design such

a knowledge graph interpreter to enrich the context representations with neighbouring concepts
on ConceptNet using graph attention network (GAT) [153].
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Table 5. Tasks, datasets and KG sources used in different KG-enhanced papers. We also compared the
performance of different models before and after incorporating KG into the generation process, in which “w/o
KG” performance comes from the best baseline method; “with KG” comes from the KG-enhanced method.

Tasks Methods Ref. Cat. Dataset Information Effect of KG KG
Name #Instance w/o KG with KG ΔBLEU source

Common-
sense
reasoning

KG-BART [76] M4 CommonGen 77,449 28.60 30.90 +2.30 ConceptNet
CE-PR [53] M3 ComVE 30,000 15.70 17.10 +1.60 ConceptNet
GRF [54] M4 𝛼NLG-ART 60,709 9.62 11.62 +2.00 ConceptNet
MGCN [18] M3 EntDesc 110,814 24.90 30.00 +4.30 Self-built KG

Story
generation

IE+MSA [43] M4 ROCStories 98,162 8.25 9.36 +1.11 ConceptNet
GRF [54] M4 (split-1) 10.40 11.00 +0.60 ConceptNet

KEPM [42] M2 ROCStories 98,162 14.10 14.30 +0.20 ConceptNet
(split-2) & ATOMIC

MRG [151] M3 VisualStory 50,000 3.18 3.23 +0.05 ConceptNet
Scientific
writing

GraphWriter [60] M4 AGENDA 40,000 12.20 14.30 +1.90 Self-built KG
PaperRobot [125] M4 PaperWriting 27,001 9.20 13.00 +3.80 Self-built KG

Dialogue
system

ConceptFlow [146] M4 Reddit-10M 3,384K 1.62 2.46 +0.84 ConceptNet
AKGCM [77] M3 EMNLP dialog 43,192 32.45 30.84 -1.61 Self-built KG
AKGCM [77] M3 ICLR dialog 21,569 6.74 6.94 +0.20 Self-built KG

Question
answering MHPGM [5] M3 NarrativeQA 46,765 19.79 21.07 +1.28 Self-built KG

Table 6. Qualitative comparison between different KG-enhanced methods.

Methods Ref. Method category Multi-hop info. Multi-hop path Auxiliary (knowledge
M1 M2 M3 M4 aggregation reasoning related) task(s)

THOTH [89] ✓ × × ×
CCM [153] ✓ ×, one-hop × ×
KEPM [42] ✓ × × ×
AKGCM [77] ✓ × ✓, Markov decision ✓, Path selection
IE+MSA [43] ✓ ✓, by GNN × ×
ConceptFlow [146] ✓ ✓, by GNN × ×
CE-PR [53] ✓ × ✓, Path routing ✓, Concept selection
GRF [54] ✓ ✓, by GNN ✓, Path scoring ✓, Link prediction

Dynamically attending KG representation (Decoding). The sequence decoder uses attention
mechanism to find useful semantics from the representation of KG as well as the hidden state of
the input text, where the KG’s representation is usually generated by GNNs. Specially, the hidden
state is augmented by subgraph representation h𝑠𝑢𝑏𝐺 , i.e., s0 = h𝑛 ⊕ h𝑠𝑢𝑏𝐺 [6]. Then, the decoder
attentively reads the retrieved subgraph to obtain a graph-aware context vector. Then it uses the
vector to update the decoding state [43, 54, 76, 146, 153]. It adaptively chooses a generic word or
an entity from the retrieved subgraph to generate output words. Because graph-level attention
alone might overlook fine-grained knowledge edge information, some recent methods adopted the
hierarchical graph attention mechanism [43, 76, 153]. It attentively read the retrieved subgraph
G𝑠𝑢𝑏 and then attentively read all knowledge edges E𝑠𝑢𝑏 involved in G𝑠𝑢𝑏 . Ji et al. added a relevance
score that reflected the relevancy of the knowledge edge according to the decoding state [54].
4.2.5 Discussion and Analysis of the Methodologies and Methods.

Pros and cons. Knowledge graph embedding (M1) was the earliest attempt to embed com-
ponents of a KG including entities and relations into continuous vector spaces and use them to
improve text generation. Those entity and relation embeddings can simply be used to enrich
input text representations (e.g., concatenating embeddings), bridging connections between entity
words linked from input text in latent space. Because the graph projection and text generation are
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performed as two separate steps, the embedding vectors from knowledge graph and the hidden
states from input text were in two different vector spaces. The model would have to learn to bridge
the gap, which might make a negative impact on the performance of text generation.

Fine tuning pre-trained language models on the KG triplets (M2) can eliminate the gap between
the two vector spaces. Nevertheless, M1 and M2 share two drawbacks. First, they only preserve
information of direct (one-hop) relations in a KG, such as pair-wise proximity in M1 and KG triplet
in M2, but ignore the indirect (multi-hop) relations of concepts. The indirect relations may provide
plausible evidence of complex reasoning for some text generation tasks. Second, from the time
KGs were encoded in M1 or M2 methods, the generation models would no longer be able to access
the KGs but their continuous representations. Then the models could not support reasoning like
commonsense KG reasoning for downstream tasks. Due to these two reasons, M1 and M2 were
often used to create basic KG representations upon which the KG path reasoning (M3) and GNNs
(M4) could further enrich the hidden states [146, 153].

The path finding methods of KG reasoning (M3) perform multi-hop walks on the KGs beyond
one-hop relations. It enables reasoning that is needed in many text generation scenarios such as
commonsense reasoning and conversational question answering. At the same time, it provides
better interpretability for the entire generation process, because the path selected by the KG
reasoning algorithm will be explicitly used for generation. However, the selected paths might not
be able to capture the full contexts of the reasoning process due to the limit of number. Besides,
reinforcement-learning based path finding uses heuristic rewards to drive the policy search, making
the model sensitive to noises and adversarial examples.

The algorithms of GNN and Graph2Seq (M4) can effectively aggregate semantic and structural
information from multi-hop neighborhoods on KGs, compared to M3 that considers multi-hop
paths. Therefore, the wide range of relevant information can be directly embedded into the en-
coder/decoder hidden states. Meanwhile, M4 enables back propagation for jointly optimizing text
encoder and graph encoder. Furthermore, the attention mechanism that has been applied in GNN
and Graph2Seq (e.g., graph attention) can explain the model’s output at some extent, though the
multi-hop paths from M3 has better interpretability.

M3 and M4 are able to use multi-hop relational information, compared to M1 and M2. However,
they have two weak points. First, they have higher complexity than M1 and M2. In M3, the action
space of path finding algorithms can be very large due to the large size and sparsity of the knowledge
graph. In M4, the decoder has to attentively read both input sequence and knowledge graph. Second,
the subgraphs retrieved by M3 andM4might provide low coverage of useful concepts for generating
the output. For example, people use ConceptNet, a widely used commonsense KG, to retrieve the
subgraph on three generative commonsense reasoning tasks. The task datasets are ComVE [54],
𝛼-NLG [7], and ROCSories [43]. We found 25.1% / 24.2% / 21.1% of concepts in the output could
be found on ConceptNet, but only 11.4% / 8.1% / 5.7% of concepts in the output can be found on
the retrieved 2-hop sequence-associated subgraph, respectively. It means that a large portion of
relevant concepts on the KG are not utilized in the generation process.

Quantitative analysis. Table 5 summarizes tasks, datasets, and KG sources used in existing
KG-enhanced works. Three important things should be mentioned. First, all the datasets in the table
are public, and we include their links in Table 10. CommonGen [72], ComVE [119] and 𝛼-NLG [7]
have a public leaderboard for competition. Second, for KG sources, we observe that eight (57.1%)
papers use ConceptNet as external resource, while six (42.9%) papers constructed their own KGs
from domain-specific corpus. For example, Koncel et al. created a scientific knowledge graph by
applying the SciIE tool (science domain information extraction) [60]. Besides, Zhao et al. compared
the performance of models between using ConceptNet and using a self-built KG, and found the
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B: I like country music. It is the most listened to rush hour radio genre.

3 relevant docs

Sequence encoder Document encoder

Sequence Decoder

Output text

(a) M1: Retrieve relevant documents, use them for generation 

Input text

B: It made $279,167,575 at the box office.

Background doc

Sequence encoder Document encoder

Sequence Decoder

Output text

(b) M2: Read background document and generate output

Input text
(1) In 2009, country music was the most lis-
tened to rush hour radio genre in the US.
(2) Country is a musical genre that origin-
ated in the southern US in the early 1920s.
(3) George Glenn Jones was an American 
musician, singer and songwriter.

A dialogue between A and B
A: Do you know George Glenn Jones?
B: Yes, he was a famous American        

singer and songwriter.
A: Cool! You sure know some stuff 

about country music!

Retrieve from Wikipedia

Background: ... but if you like ben stiller, go see “meet 
the fockers”. Dustin’s antics will favorite character was 
jack (the older one), because he was so serious but 
always plotting and putting up a front. I think it was 
$279,167,575 awards ASCAP film and television music 
awards 2005 top box office films MTV… (~250 words)

A dialogue between A and B
A: That name is so ridiculous but funny. 
B: First off, the writers did not miss a single 
opportunity to play off of the name “focker”. 
A: Yeah, I heard it was a pretty successful
movie overall.

A background-based conversion (BBC)

Fig. 7. The left figure demonstrates retrieving relevant documents, then using them for generation; the right
figure demonstrate reading background document to conduct conversions.

model with self-built KG could work better on story generation and review generation tasks [151].
Third, we observed that KG-enhanced NLG methods made the largest improvement on generative
commonsense reasoning tasks, in which the average improvement is +2.55% in terms of ΔBLEU,
while the average improvement on all different tasks is +1.32%.

Qualitative analysis. Table 6 compares different KG-enhanced methods from three dimensions:
multi-hop information aggregation, multi-hop path reasoning, and auxiliary knowledge graph
related tasks. M3 is commonly used for multi-hop path reasoning and M4 is used for multi-hop
information aggregation, except that CCM [153] only aggregates one-hop neighbors. Besides, the
auxiliary KG-related tasks are often used to further help the model learn knowledge from the KG.
For example, ablation studies in [53, 54, 77] show that the tasks of path selection, concept selection
and link prediction can further boost the generation performance. GRF [54] learns these three
abilities at the same time. It achieves the state-of-art performance on three generation tasks.

4.3 NLG enhanced by Grounded Text
Knowledge grounded text refers to textual information that can provide additional knowledge
relevant to the input sequence. The textual information may not be found in training corpora
or structured databases, but can be obtained from massive textual data from online resources.
These online resources include encyclopedia (e.g., Wikipedia), social media (e.g., Twitter), shopping
websites (e.g., Amazon reviews). Knowledge grounded text plays an important role in understanding
the input sequence and its surrounding contexts. For example, Wikipedia articles may offer textual
explanations or background information for the input text. Amazon reviews may contain necessary
descriptions and reviews needed to answer a product-related question. Tweets may contain people’s
comments and summaries towards an event. Therefore, knowledge grounded text is often taken as
an important external knowledge source to help with a variety of NLG applications.
To handle different kinds of relationships between grounded text and input/output sequences,

these methods can be categorized into two methodologies as shown in Figure 7: (M1) guiding gener-
ation with retrieved information; (M2) modeling background knowledge into response generation.
4.3.1 M1: Guiding Generation with Retrieved Information. Because knowledge grounded
text is not presented in the training corpora, an idea is to retrieve relevant textual information (e.g.,
a review, a relevant document, a summary template) from external sources based on the input text
and to incorporate the retrieved grounded text into the generation process. This process is similar
to designing knowledge acquisition and incorporation of KBs and KGs in text generation tasks.
The difference is that ground text is unstructured and noisy. So, researchers design knowledge
selection and incorporation methods to address the challenges. Based on the number of stages,
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Table 7. Tasks, datasets and evidence sources used in retrieve-then-generate (M1) papers. We also include
their document(d)/sentence(s) retrieval space and the number of retrieved document(d)/sentence(s).

Evidence Tasks Methods Ref. Dataset Information Retrieval # Retri-
sources Name #Instance space (d/s) eved d/s

Wikipedia

Dialogue
system

MemNet [24] Wizard of
Wikipedia (WoW) 22,311 5.4M/93M 7

SKT [58] 7

Question
answering

RAG [64] MS-MARCO 267,287 21M/- 10
BART+DPR [96] ELI5 274,741 3.2M/- -
RT+C-REALM [61] 3.2M/- 7

Argument
generation

H&W [50] ChangeMyView 287,152 5M/- 10
CANDELA [49] 5M/- 10

Online platform
(e.g., Amazon)

Dialogue (for
business)

AT2T [59] Amazon books 937,032 -/131K 10
KGNCM [39] Foursquare 1M -/1.1M 10

Gigawords Summari-
zation

R3Sum [12] Gigawords 3.8M -/3.8M 30
BiSET [124] -/3.8M 30

Table 8. Qualitative comparison between different grounded text enhanced methods.

Methods Ref. Method category Retrieval supervision Retriever Number
M1.1 M1.2 M2 pre-training of stages

MemNet [24] ✓ ✓, Human annotated labels × 2
SKT [58] ✓ ✓, Human annotated labels × 2
R3Sum [12] ✓ ✓, Pseudo labels × 3, with rerank
BiSET [124] ✓ ✓, Pseudo labels × 3, with rerank
RefNet [83] ✓ × × 1, no retrieval
GLKS [103] ✓ × × 1, no retrieval
RAG [64] ✓ × ✓, DPR 2
Kilt [96] ✓ × ✓, DPR 2
RT+C-REALM [61] ✓ × ✓, REALM 2

we further divide related methods into two categories: retrieve-then-generate (also known as
retrieval-augmented generation, short as RAG, in many existing papers [61, 64, 96]) methods
(2-stage methods) and retrieve, rerank and rewrite methods (3-stage methods).

M1.1: Retrieval-augmented generation (RAG). RAG follows a two-stage process: retrieval
and generation. Specially, as shown in Figure 7(a), a retriever 𝑝 (𝑍 |𝑋 ) first returns (usually top-K
truncated) distributions over text passages given a query 𝑋 , and then a generator 𝑝 (𝑦𝑖 |𝑋,𝑍,𝑦1:𝑖−1)
generates a current token based on a context of the previous tokens 𝑦1:𝑖−1, the original input 𝑋
and a retrieved passage 𝑍 . Methods for retrieving fact or review snippets are various, including
matching from a collection of raw text entries indexed by named entities [39]; scoring relevant
documents within a large collection by statistical approaches such as BM25 [24], or neural-based
retrieval approaches such as dense paragraph retrieval (DPR) [64]. For training the retriever and
generator, most of existing work has jointly optimized these two components, without any direct
supervision on what document should be retrieve [61, 64]. However, by asking human experts to
label what document should be retrieved and adding the retrieval loss (resulting in a multi-task
learning setting), the generation performance can be greatly improved [24, 58], though the labelling
process is an extremely time-consuming and labor-intensive task.
Ghazvininejad et al. proposed a knowledge grounded neural conversation model (KGNCM),

which is the first work to retrieve review snippets from Foursquare and Twitter. Then it incorporates
the snippets into dialogue response generation [39]. It uses an end-to-end memory network [111]
to generate responses based on the selected review snippets. Lewis et al. introduced a general
retrieval-augmented generation (RAG) framework by leveraging a pre-trained neural retriever and

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:26 Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu, Qingyun Wang, Heng Ji, and Meng Jiang

generator. It can be easily fine-tuned on downstream tasks, and it has demonstrated state-of-the-
art performance on various knowledge intensive NLG tasks [64]. Recently, the fusion-in-decoder
methods (i.e., the decoder performs attention over the concatenation of the resulting representations
of all retrieved passages [68, 140]) could even outperform RAG as reported in KILT benchmark [96].

M1.2: Retrieve, rerank and rewrite (𝑅3). Different from RAG, a 𝑅3-based method is expected
to retrieve a most precise reference document that can be directly used for rewriting/editing. 𝑅3-
based method has proved successful in a number of NLG tasks such as machine translation [41],
and summarization [12, 124]. In summarization, Seq2Seq models that purely depend on the input
document to generate summaries tend to deteriorate with the accumulation of word generation, e.g.,
they generate irrelevant and repeated words frequently [12, 124]. Template-based summarization
assume the golden summaries of the similar sentences (i.e., templates) can provide a reference point
to guide the input sentence summarization process [12, 124]. These templates are often called soft
templates in order to distinguish from the traditional rule-based templates. Soft template-based
summarization typically follows a three-step design: retrieve, rerank, and rewrite. The step of
retrieval aims to return a few candidate templates from a summary collection. The reranking
identifies the best template from the retrieved candidates. And the rewriting leverages both the
source document and template to generate more faithful and informative summaries.
Difference between RAG and 𝑅3. Compared with 𝑅3-based methods, RAG-based have several

differences, including less of emphasis on lightly editing a retrieved item, but on aggregating
content from several pieces of retrieved content, as well as learning latent retrieval, and retrieving
evidence documents rather than related training pairs.

4.4 M2: Modeling Background Knowledge into Response Generation
Background document, with more global and comprehensive knowledge, has been often used for
generating informative responses and ensuring a conversation to not deviate from its topic. Keeping
a conversation grounded on a background document is referred as background based conversation
(BBC) [8, 86]. Background knowledge plays an important role in human-human conversations.
For example, when talking about a movie, people often recall important points (e.g., a scene or
review about the movie) and appropriately mention them in the conversation context. Therefore, an
intelligent NLG model is expected to find an appropriate background snippet and generate response
based on the snippet. As shown in Figure 7(b), the task of BBC is often compared with machine
reading comprehension (MRC), in which a span is extracted from the background document as a
response to a question [101]. However, since BBC needs to generate natural and fluent responses,
the challenge lies in not only locating the right semantic units in the background, but also referring
to the right background information at the right time in the right place during the decoding phase.
As MRC models tie together multiple text segments to provide a unified and factual answer,

many BBC models use the same idea to connect different pieces of information and find the
appropriate background knowledge based on which the next response is to be generated [83, 98].
For instance, Qin et al. proposed an end-to-end conversation model that jointly learned response
generation together with on-demand machine reading [98]. The MRC models can effectively
encode the input utterance by treating it as a question in a typical QA task (e.g., SQuAD [101]) and
encode the background document as the context. Then, they took the utterance-aware background
representation as input into decoding phase.
4.4.1 Discussion and Analysis of Different Methods.

Pros and cons. For M1, guiding generation with retrieved information explicitly exposes the
role of world knowledge by asking the model to decide what knowledge to retrieve and use
during language generation. Since retrieval-augmented generation (RAG) captures knowledge in a
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interpretable and modular way, it is often used for knowledge-intensive tasks such as long-form QA
and argument generation. However, a knowledge retriever is expected to retrieve documents from
a large-scale corpus, e.g., the entire Wikipedia, which causes significant computational challenge.
Besides, one input often requires retrieved text whose amount is much larger than the input itself
(as indicated in Table 7), leading to serious information overwhelming for the generation model.

For M2, background based conversations (BBCs) avoid generating generic responses in a dialogue
system and are able to generate more informative responses by exploring related background
information. However, existing methods still cannot solve inherent problems effectively, such as
tending to break a complete semantic unit and generate shorter responses [83].

Qualitative analysis. Table 7 summarizes tasks, datasets and evidence sources used in existing
grounded text enhanced work. Three important things should be mentioned. First, all the datasets in
the table are public, and we include their links in Table 10. Second, Wikipedia is the most commonly
used evidence source since it is the largest free online encyclopedia. Besides, some online platforms
contain plenty of product-related textural information, e.g., product reviews on Amazon, which
are often used to build up task/goal oriented dialogue systems for business purpose. Third, the
retrieval space of candidate documents are usually larger than 1 million and only 7-10 documents
are selected. So, the process of retrieving relevant documents is challenging.
Table 8 compares different grounded text enhanced methods from three dimensions: retrieval

supervision, pre-training of the retriever, and number of stages. First, as mentioned above, retrieving
relevant documents from a large candidate set is a challenging task. To improve the retrieval
accuracy, four (57.1%) papers added the retrieval supervision either by human annotated labels
or pseudo labels, resulting in a multi-task learning setting. Besides, three (42.9%) papers used pre-
trained language models to produce document representation for better retrieval. Though existing
work has greatly improved the retrieval accuracy, the performance is still far from satisfactory in
many text generation tasks [61, 64]. How to learn mutually enhancement between retrieval and
generation is still a promising direction in the grounded text enhanced text generation systems.

5 BENCHMARK, TOOLKIT AND LEADERBOARD PERFORMANCE
The development of general evaluation benchmarks for text generation helps to promote the
development of research in related fields. Existing text generation benchmarks did not specially
focus on choosing the tasks and datasets that have been widely used for knowledge-enhanced
text generation. Therefore, we re-screened from the existing four text generation benchmarks, i.e.,
GLGE [73], GEM [37], KilT [96], GENIE [57], and determined 9 benchmark datasets for evaluating
knowledge-enhanced NLG methods. Here is our criteria for selection:

• We only consider benchmark datasets that have open-access downloading link.
• We focus on diverse text generation tasks, involving various applications.
• We select at most three benchmark datasets for each text generation task.
• We include a mix of internal and external knowledge focused datasets.
• We prefer multi-reference datasets for robust automatic evaluation.

Based on the benchmark selection criteria, we finalize 9 knowledge-centric tasks that covers
various NLG tasks, including commonsense reasoning, text summarization, question generation,
generative question answering, and dialogue. The data statistics is shown in Table 9. Descriptions
and dataset links are listed as follows:

• Wizard of Wikipedia (WOW): It is an open-domain dialogue dataset, where two speakers
conduct an open-ended conversion that is directly grounded with knowledge retrieved from
Wikipedia. (Data link: https://parl.ai/projects/wizard_of_wikipedia/)
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Table 9. We choose 9 knowledge-enhanced NLG benchmark datasets. These datasets have been included in
four existing general NLG benchmarks (i.e., GLGE [73], GEM [37], Kilt [96], GENIE [57]) or in SemEval tasks.

Tasks Ref. Dataset Information Leader In which NLG Papers including
Name #Train #Dev. #Test board benchmark this dataset

Dialogue
system

[24] Wizard of
Wikipedia 18,430 1,948 1,933 ✓∗ Kilt [24, 58, 70]

[149] PersonaChat 122,499 14,602 14,056 × GLGE [24, 70]
Question
answering [28] ELI5 272,634 1,507 600 ✓‡ Kilt [61, 96]

Question
generation [101] SQuAD 75,722 10,570 11,877 × GLGE [16, 19, 128]

Commonsense
reasoning

[72] CommonGen 67,389 4,018 6,042 ✓§ GEM [29, 76, 121]
[7] 𝛼NLG-ART 50,481 7,252 2,976 ✓¶ GENIE [7, 54]
[119] ComVE 25,596 1,428 2,976 ✓∥ SemEval [53, 54]

Summarization [105] CNN/DM 287,226 13,368 11,490 ✓∗∗ GLGE [30, 38, 157]
[105] Gigaword 3.8M 189K 1,951 ✓†† GLGE [12, 56, 65]

• CommonGen: It is a generative commonsense reasoning dataset. Given a set of common
concepts, the task is to generate a coherent sentence describing an everyday scenario using
these concepts. (Data link: https://inklab.usc.edu/CommonGen/)
• 𝛼NLG-ART: It is a generative commonsense reasoning dataset. Given the incomplete obser-
vations about the world, the task it to generate a valid hypothesis about the likely explanations
to partially observable past and future. (Data link: http://abductivecommonsense.xyz/)
• ComVE: It is a generative commonsense reasoning dataset. The task is to generate an
explanation given a counterfactual statement for sense-making. (Data link: https://github.
com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation
• ELI5: It is a dataset for long-form question answering. The task is to produce explana-
tory multi-sentence answers for diverse questions. Web search results are used as evidence
documents to answer questions. (Data link: https://facebookresearch.github.io/ELI5/)
• SQuAD: It is a dataset for answer-aware question generation. The task is to generate a
question asks towards the given answer span based on a given text passage or document.
(Data link: https://github.com/magic282/NQG)
• CNN/DailyMail (CNN/DM): It is a dataset for summarization. Given a news aticles, the goal
is to produce a summary that represents the most important or relevant information within
the original content. (Data link: https://www.tensorflow.org/datasets/catalog/cnn_dailymail)
• Gigaword: It is a dataset for summarization. Similar with CNN/DM, the goal is to generate a
headline for a news article. (Data link: https://www.tensorflow.org/datasets/catalog/gigaword)
• PersonaChat: It is an open-domain dialogue dataset. It presents the task of making chit-
chat more engaging by conditioning on profile information. (Data link: https://github.com/
facebookresearch/ParlAI/tree/master/projects/personachat)

∗https://parl.ai/projects/wizard_of_wikipedia
†https://nikitacs16.github.io/holl-e-website/
‡https://facebookresearch.github.io/ELI5/
§https://inklab.usc.edu/CommonGen/leaderboard.html
¶https://leaderboard.allenai.org/genie-anlg/submissions/public
∥https://competitions.codalab.org/competitions/21080#results
∗∗https://paperswithcode.com/sota/document-summarization-on-cnn-daily-mail
††https://paperswithcode.com/sota/text-summarization-on-gigaword
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Table 10. A list of representative open-source knowledge-enhanced text generation systems.

Task Ref. Programming Venue Year Code link
Topic-enhanced methods

Summarization [91] PyTorch EMNLP 2018 https://github.com/EdinburghNLP/XSum
[130] PyTorch EMNLP 2020 https://github.com/BoChenGroup/TA

Keyword-enhanced methods
Dialogue
system

[88] Tensorflow COLING 2016 https://github.com/MaZhiyuanBUAA/Seq2BFforDialogueGeneration
[130] PyTorch AAAI 2018 https://github.com/loadder/ECM-tf

Summarization [69] PyTorch ACL 2019 https://github.com/lancopku/Graph-to-seq-comment-generation
KB-enhanced methods

Dialogue
system

[78] PyTorch ACL 2019 https://github.com/HLTCHKUST/Mem2Seq
[130] PyTorch ICLR 2019 https://github.com/jasonwu0731/GLMP
[123] PyTorch AAAI 2020 https://github.com/siat-nlp/TransDG
[131] Tensorflow ACL 2020 https://github.com/pku-sixing/ACL2020-ConKADI

KG-enhanced methods

Dialogue
system

[153] Tensorflow IJCAI 2018 https://github.com/thu-coai/ccm
[116] Tensorflow EMNLP 2019 https://github.com/Pascalson/DyKGChat
[146] PyTorch ACL 2020 https://github.com/thunlp/ConceptFlow

Scientific
writing

[60] PyTorch NAACL 2019 https://github.com/rikdz/GraphWriter
[125] PyTorch ACL 2019 https://github.com/EagleW/PaperRobot

Commonsense
reasoning
& Story
generation

[43] Tensorflow AAAI 2019 https://github.com/JianGuanTHU/StoryEndGen
[54] PyTorch EMNLP 2019 https://github.com/cdjhz/multigen
[76] PyTorch AAAI 2021 https://github.com/yeliu918/KG-BART
[18] MXNet EMNLP 2020 https://github.com/LiyingCheng95/EntityDescriptionGeneration

Ground text-enhanced methods

Dialogue
system

[24] PyTorch ICLR 2019 https://github.com/facebookresearch/ParlAI
[98] PyTorch ACL 2019 https://github.com/qkaren/converse_reading_cmr
[58] Tensorflow ICLR 2020 https://github.com/bckim92/sequential-knowledge-transformer
[83] Tensorflow AAAI 2020 https://github.com/ChuanMeng/RefNet

Summarization [124] PyTorch ACL 2019 https://github.com/InitialBug/BiSET
Question
answering

[64] PyTorch Neurips 2020 https://github.com/huggingface/transformers
[96] PyTorch NAACL 2021 https://github.com/facebookresearch/KILT

6 DISCUSSION ON FUTURE DIRECTIONS
Many efforts have been conducted to tackle the problem of knowledge-enhanced text generation
and its related applications. To advance the field, there remains several open problems and future
directions. Designing more effective ways to represent knowledge and integrate them into the
generation process is still the most important trend in knowledge-enhanced NLG systems. From a
broader perspective, we provide three directions that make focusing such efforts worthwhile now:
(i) incorporating knowledge into visual-language generation tasks, (ii) learning knowledge from
broader sources, especially pre-trained language models, (iii) learning knowledge from limited
resources, (iv) learning knowledge in a continuous way.

6.1 Incorporate Knowledge into Visual-Language Generation Tasks
Beyond text-to-text generation tasks, recent years have witnessed a growing interest in visual-
language (VL) generation tasks, such as describing visual scenes [46], and answering visual-related
questions [81]. Although success has been achieved in recent years on VL generation tasks, there
is still room for improvement due to the fact that image-based factual descriptions are often not
enough to generate high-quality captions or answers [156]. External knowledge can be added in
order to generate attractive image/video captions. We observed some pioneer work has attempted
to utilize external knowledge to enhance the image/video captioning tasks. For example, Tran et
al. proposed to detect a diverse set of visual concepts and generate captions by using an external
knowledge base (i.e., Freebase), in recognizing a broad range of entities such as celebrities and
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landmarks [115]. Zhou et al. used a commonsense knowledge graph (i.e., ConceptNet), to infer a
set of terms directly or indirectly related to the words that describe the objects found in the scene
by the object recognition module [156]. In addition, Mao et al. [81] proposed a neuro-symbolic
learner for improving visual-language generation tasks (e.g., visual question answering).
However, existing approaches for knowledge-enhanced visual-language generation tasks still

have a lot of space for exploration. Some promising directions for future work include using other
knowledge sources, such as retrieving image/text to help solve open-domain visual question answer-
ing and image/video captioning tasks; bringing structured knowledge for providing justifications
for the captions that they produce, tailoring captions to different audiences and contexts, etc.

6.2 Learning Knowledge from Broader Sources
More research efforts should be spent on learning to discover knowledge more broadly and combine
multiple forms of knowledge from different sources to improve the generation process. More
knowledge sources can be but not limited to network structure, dictionary and table. For examples,
Yu et al. [142] and An et al. [2] augmented the task of scientific papers intention detection and
summarization by introducing the citation graph; Yu et al. augmented the rare word representations
by retrieving their descriptions from Wiktionary and feed them as additional input to a pre-
trained language model [143]. Besides, structured knowledge and unstructured knowledge can
play a complementary role in enhancing text generation. To improve knowledge richness, Fu et al.
combined both structured (knowledge base) and unstructured knowledge (grounded text) [31].

Leveraging Knowledge from Pre-trained Language Models. Pre-trained language models can learn
a substantial amount of in-depth knowledge from data without any access to an external memory,
as a parameterized implicit knowledge base [64, 100]. However, as mentioned in [42], directly
fine-tuning pre-trained language generation models on the story generation task still suffers from
insufficient knowledge by representing the input text thorough a pre-trained encoder, leading
to repetition, logic conflicts, and lack of long-range coherence in the generated output sequence.
Therefore, discovering knowledge from pre-trained language models can be more flexible, such as
knowledge distillation, data augmentation, and using pre-trained models as external knowledge [97].
More efficient methods of obtaining knowledge from pre-trained language models are expected.

6.3 Learning Knowledge from Limited Resources
Most of current NLG research conduct on extensively labelled data to favor model training. However,
this is in contrast to many real-world application scenarios, where only a few shots of examples are
available for new domains. Limited data resources lead to limited knowledge that can be learnt in new
domains. For examples, learning topical information of a dialogue occurring under a new domain
is difficult since the topic may be rarely discussed before; constructing a syntactic dependency
graph of a sequence in a low-resource language is hard since many linguistic features are of great
uniqueness. Besides, external knowledge bases are often incomplete and insufficient to cover full
entities and relationships due to the human costs of collecting domain-specific knowledge triples.
Therefore, quick domain adaptation is an essential task in text generation tasks. One potential route
towards addressing these issues is meta-learning, which in the context of NLG means a generation
model develops a broad set of skills and pattern recognition abilities at training time, and quickly
adapt to a new task given very few examples without retraining the model from scratch. Recently,
there has been raising interests in both academia and industry to investigate meta-learning in
different NLG tasks. Thus, it is a promising research direction to build efficient meta-learning
algorithms that only need a few task-specific fine-tuning to learn the new task quickly. And for
knowledge-enhanced text generation, it is of crucial importance to adapt the model quickly on new
domains with limited new knowledge (e.g., only a few knowledge triples).
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6.4 Learning Knowledge in a Continuous Way
A machine learning is expected to learn continuously, accumulate the knowledge learned in
previous tasks, and use it to assist future learning. This research direction is referred as lifelong
learning [17]. In the process, the intelligent machine becomes more and more knowledgeable
and effective at learning new knowledge. To make an analogy, humans continuously acquire
new knowledge and constantly update the knowledge system in the brain. However, existing
knowledge-enhanced text generation systems usually do not keep updating knowledge in real time
(e.g., knowledge graph expansion). A meaningful exploration of was discussed in [82]. They built a
general knowledge learning engine for chatbots to enable them to continuously and interactively
learn new knowledge during conversations. Therefore, it is a promising research direction to
continuously update knowledge obtained from various information sources, empowering intelligent
machines with incoming knowledge and improving the performance on new text generation tasks.

7 CONCLUSIONS
In this survey, we present a comprehensive review of current representative research efforts and
trends on knowledge-enhanced text generation, and expect it can facilitate future research. To
summarize, this survey aims to answer two questions that commonly appears in knowledge-
enhanced text generation: how to acquire knowledge and how to incorporate knowledge to facilitate
text generation. Base on knowledge acquisition, the main content of our survey is divided into
three sections according to different sources of knowledge enhancement. Based on knowledge
incorporation, we first present general methods of incorporating knowledge into text generation and
further discuss a number of specific ideas and technical solutions that incorporate the knowledge to
enhance the text generation systems in each section. Besides, we review a variety of text generation
applications in each section to help practitioners learn to choose and employ the methods.
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