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ABSTRACT

Information extraction (IE) is a challenging and essential task in the area of natural

language processing (NLP), and can be applied to a broad range of applications such

as question answering, conversational language understanding, machine translation

and many more. It aims to automatically identify important entity mentions and

their interactions such as relations and events from unstructured documents. In the

past decade, researchers have made significant progress in this area. Although many

IE approaches employ a pipeline of many independent components, various depen-

dencies in IE from multiple components, multiple documents, and multiple languages

are pervasive. The ignorance of those dependencies in traditional approaches leads

to inferior performance because of the fact that the local classifications do not talk

to each other to produce coherent results, and more importantly, they are incapable

of performing global inference. Therefore it is critical to devise cross-component,

cross-document, and cross-language joint modeling methods to further improve the

performance of IE.

Taking entity mention extraction, relation extraction and event extraction as

points of view, the main part of this thesis presents a novel sentence-level joint IE

framework based on structured prediction and inexact search. In this new frame-

work, the three types of IE components can be simultaneously extracted to alleviate

error propagation problem. And we can make use of various global features to

produce more accurate and coherent results. Experimental results on the ACE cor-

pora show that our joint model achieves state-of-the-art performance on each stage

of the extraction. We further go beyond sentence level and make improvement in

cross-document setting. We use an integer-linear-programming (ILP) formulation

to conduct cross-document inference so that many spurious results can be effectively

filtered out based on the inter-dependencies over the facts from different places. Fi-

nally, to investigate the cross-lingual dependencies, we present a CRF-based joint

bilingual name tagger for parallel corpora, then demonstrate the application of this

method to enhance name-aware machine translation.
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CHAPTER 1

Introduction

Information extraction (IE) is an important task in the field of Natural Language

Processing (NLP), and has been applied to various applications such as question

answering, information retrieval, conversational language understanding, machine

translation and many more. The goal of IE is to extract information structures of

entity mentions and their interactions such as relations and events from unstruc-

tured documents. The task is often artificially broken down into several subtasks,

and various types of facts are extracted in isolation. Errors in upstream components

are propagated to the downstream classifiers, often resulting in compounding errors.

However, various entity mentions and their interactions in the information structure

are inter-dependent. Also the output structures should comply with multiple soft

and hard constraints. In this thesis we study the topic of joint information extrac-

tion to bridge the gap among multiple local predictions in traditional approaches,

and produce more accurate and coherent IE results. In this chapter, we begin by

describing the subtasks in information extraction that we addressed on in this thesis

(Section 1.1), and then briefly introduce the main concepts of joint information ex-

traction (Section 1.2), and finally overview the structure of this thesis (Section 1.4)

1.1 Introduction of Information Extraction

In this section, we explain to the reader the essential background knowledge of

this thesis. The IE tasks that we are addressing are those of the Automatic Content

Extraction (ACE) program1.

IE is the task of identifying and classifying entities that are mentioned in

natural language documents, and the predicates and attributes that they are asso-

ciated with, such as relations and events. Some common sub-tasks include entity

mention extraction, relation extraction, and event extraction, slot filling, entity link-

ing, co-reference resolution etc. In this thesis, we are focusing on the three most

1http://www.nist.gov/speech/tests/ace (Date Last Accessed, March, 10, 2015)

1
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fundamental and important tasks: entity mention extraction, relation extraction

and event extraction. With the help of these techniques, we can ask computers

to automatically process massive amount of natural language documents such as

news articles and web blogs, and render the important facts to potential users. For

instance, let us consider the following excerpt of Marissa Mayer ’s Wikipedia page:

Marissa Ann Mayer is the current president and CEO of Yahoo!.

...

Mayer was the Vice President of Google Product Search until the end of 2010,

when she was moved by then-CEO Eric Schmidt.

On July 16, 2012, Mayer was appointed President and CEO of Yahoo!.

...

Mayer married lawyer and investor Zachary Bogue on December 12.

...

and Mayer gave birth to a baby boy on September 30, 2012.

While human being can fully understand those sentences and capture the important

information from them, it is challenging for computers to distill the semantics. By

developing IE algorithms, we can enable computers to extract the following struc-

tured information automatically:

Entity Mention Type

“Marissa Ann Mayer” Person

“Eric Schmidt” Person

“Google” Organization

“baby” Person

“Yahoo!” Organization

“Zachary Bogue” Person

This information can then be processed by downstream applications such as question

answering, document summarization, and information retrieval. The table above

only contains persons and organizations. It is more useful to acquire the static

relations and dynamic events that they participate in. For example, if we know
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“Mayer” and “Zachary Bogue” were participants in a Marriage event, and the

relation between “Mayer” and the company “Yahoo!” is CEO, then in a question

answering system we will be able to answer questions such as “(who is the) spouse

of Marissa Mayer”, or “(who is the) CEO of Yahoo!”. To this end, the tasks of

relation extraction and event extraction aim to discover the following information:

“Marissa A. Mayer” (Employee) Employment (president, CEO) “Yahoo!” (Employer)

“Eric Schmidt” (Employee) Employment (CEO) “Google” (Employer)

“Mayer” (Person) Start-Position (appointed) “Yahoo!” (Entity)

“she” (Person) End-Position (moved) “Google” (Entity)

“Mayer” (Argument-1) Marry (married) “Zachary Bogue” (Argument-2)

“Mayer” (Argument-1) Birth (gave birth) “baby” (Argument-2)

With all of the information above, we obtain a knowledge graph about the entities

that are mentioned in the document. In later chapters, we refer to it as information

networks. It worth noting that in addition to the above information, it is also

important to determine that “she” and “Marissa Ann Mayer” refer to the same

person. This can be handled by entity co-reference resolution [1], which is another

challenging and extensively studied task in IE and beyond the scope of this thesis.

IE has been a popular research area since 1990s, when the first Message Under-

standing Conference (MUC-1) was introduced. Standard human-annotated corpora

and evaluation metrics was developed along with the evolutions from MUC-1 to

MUC-7 [2]. Automatic Content Extraction (ACE)2 then made significant progress

on covering a broad range of entities, relations, and events from multiple genres

(such as news articles, broadcast, and web forums), several topics (such as politics,

sports, finance etc.), and multiple languages including English, Chinese, and Ara-

bic. Knowledge Base Population (KBP)3 further moved from single-document IE

tasks to cross-document tasks. For example, in KBP Slot Filling, given an entity

mention as a query, a system is required to look for pre-defined attributes (such as

residence, spouse etc.) for the query from a large collection of unlabeled documents.

However, many systems rely on entity mention extraction, relation extraction and

event extraction [3].

2http://www.itl.nist.gov/iad/mig/tests/ace/ (Date Last Accessed, March, 10, 2015)
3http://www.nist.gov/tac/2014/KBP/index.html (Date Last Accessed, March, 10, 2015)
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Table 1.1: Examples of entity types.

Entity Type Example
Person (PER) Saddam Hussein ’s regime has fallen.
Organization (ORG) Downer told the Australian Broadcasting Corp.
Geographical Entities (GPE) U.S. marines entered southeastern Baghdad.
Location (LOC) Along the riverfront there.
Facility (FAC) sent her to the hospital.
Weapon (WEA) two bullets hit the windshield.
Vehicle (VEH) an airline crashed near New York.

1.1.1 Entity Mention

An entity mention is a reference to an object or a set of objects in the world.

It may be a reference by its name, a common noun or noun phrase, or a pronoun.

There are three different major mention types: 1) Named mention (NAM): proper

names of entities such as “Steve Jobs”, “Apple Inc.” and “California”; 2) Nominal

mention (NOM): such as “the executive”, “the company” and “some states”; and 3)

Pronoun mention (PRO): such as “he”, “they”, and “it”. The task of identification

and classification of named entities is commonly known as named entity recognition

(NER) or name tagging. In this thesis, those two names are interchangeable unless

otherwise noted. [4] gives a comprehensive literature survey about this subtask.

Different from the notion of mention type, entity type describes the type of

the entity that an entity mention refers to. ACE defined 7 main entity types in-

cluding: Person (PER), Organization (ORG), Geographical Entities (GPE), Location

(LOC), Facility (FAC), Weapon (WEA) and Vehicle (VEH). Each of them has a certain

number of fine-grained subtypes. For example, Organization contains 9 subtypes

including Sports Organization, Government Organization, Religious Organization,

Media Organization. In this thesis, we only focus on the main types. Table 1.1

shows some examples of the 7 main types.

1.1.2 Relation

A relation4 is a directed semantic relation of the targeted types between a pair

of entity mentions that appear in the same sentence. ACE’04 defined 7 main re-

4Throughout this thesis we refer to relation mention as relation since we do not consider relation
mention co-reference. Similarly, we refer to event mention as event.
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Table 1.2: Examples of relation types.

Relation Type Example
Physical Stanley McChrystal(PER) said at the Pentagon(GPE) Tuesday.
Part-whole the key regime centers(LOC) of power in Baghdad(GPE).
Personal-Social Nathan(PER) divorced wallpaper salesman Bruce Nathan(PER)

Agent-Artifact North Korea(ORG)’s weapons(WEP)
ORG-Affiliation The tire maker(ORG) still employs 1,400(PER)

Gen-Affiliation Israeli(GPE) forensics experts(PER)

lation types: Physical (PHYS), Person-Social (PER-SOC), Employment-Organization

(EMP-ORG), Agent-Artifact (ART), PER/ORG Affiliation (Other-AFF), GPE-Affiliation

(GPE-AFF) and Discourse (DISC). ACE’05 kept PER-SOC, ART and GPE-AFF, split PHYS

into PHYS and a new relation Part-Whole, removed DISC, and merged EMP-ORG and

Other-AFF into ORG-Affiliation. Table 1.2 demonstrates some examples of rela-

tions, where underscore indicates the two arguments for each relation.

1.1.3 Event

An event is a specific occurrence of event with several participants. ACE’05

defined 8 event types and 33 subtypes such as Attack, End-Position etc. We

introduce the terminology of the ACE event extraction as follows:

• Event mention: an occurrence of an event in the text with a particular type,

a trigger (a.k.a. anchor), and a set of arguments.

• Event trigger: the word that most clearly expresses the event mention.

• Event argument: an entity mention, temporal expression or value (e.g. Job-

Title) serves as a participant or attribute with a specific role for an event

mention. Each type of event has a set of predefined argument roles. For exam-

ple, Transport event has Agent, Artifact, Vehicle, Origin, Destination

and Time. Some argument roles are shared by multiple types of event. For

example, Place and Time are possible arguments to all types of events.

According to the ACE definition, the arguments and the trigger of each event men-

tion should appear in the same sentence. Table 1.3 shows an example of two event

mentions in the sentence “Greece began evacuating its embassy in Baghdad”. We
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Table 1.3: Example of event mention.

Type Transport

Trigger “evacuate”

Arguments

Argument Role Mention Head Entity Type
Artifact “embassy” ORG

Origin “Baghdad” GPE

Agent “Greece” GPE

refer the reader to the official ACE annotation guideline for a complete list of event

types and argument roles [5]. To summarize, there are two main differences between

events and relations:

1. Relations are static or long-lasting predicates between entity mentions, while

events capture dynamic activities that entity mentions participate in.

2. In each relation, there exist exactly two arguments. On the contrary, each

event can have arbitrary numbers of arguments. For instance, although

Transport event has six possible types of arguments, in Table 1.3, we only

tag those occur in the same sentence.

1.1.4 Graphical Example

In the previous examples, entity mentions, relations and events are all de-

scribed by tables with disconnected entries as in most prior work (such as [6] and

[7]). It is more reasonable and convenient to represent them in a graph, especially

when multiple types of information occur in the same sentence. For instance, for

the sentence “Barry Diller resigned as co-chief executive of Vivendi Universal Enter-

tainment.” An information extractor should produce the entity mention, relation,

event mention structure as depicted in the following figure:

Barry Diller| {z }
PER

resigned as co-chief executive| {z }
PER

of Vivendi Universal Entertainment| {z }
ORG

.

End-Position

Entity

Position
Person

EMP-ORG
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where solid lines represent event trigger “resigned” and its arguments, and dashed

represents the relation between Person mention “co-chief executive” and Organiza-

tion mention “Vivendi Universal Entertainment”. In later chapters, we will formu-

late the IE annotation to be “information networks”, which is consistent with this

representation.

1.2 Joint Information Extraction

In the realm of IE, dependencies and constraints across multiple components,

multiple documents, and multiple languages are pervasive. In this thesis, we improve

the performance of IE by utilizing those dependencies in joint extraction frameworks.

Figure 1.1 gives an overview of the main objectives in this thesis.

Most state-of-the-art IE approaches [6–12] used sequential pipelines as build-

ing blocks, and break down the whole task into multiple separate subtasks. For

instance, to build an event extraction or relation extraction system, they first need

to obtain entity mention information from a separate classifier or manual annota-

tion. Additionally, the extraction of event triggers and argument links are regarded

as two isolated subtasks. As a result, a full pipeline of IE is comprised of many

isolated local classifiers. We argue that such a pipelined approach has the following

limitations: First, it prohibits the interactions among components. Errors in up-

stream components are propagated to the downstream classifiers, often resulting in

compounding errors. The downstream components, however, cannot impact earlier

decisions with feedback. Second, it over-simplifies the whole task as a set of isolated

local classification problems without taking into account global dependencies. When

skilled human readers distill information from documents, they do not predict differ-

ent types of facts step by step in a “bottom-up” fashion; instead, they tend to take

a “top-down” approach - attempting to comprehend content and predict high-level

information through the lens of prior knowledge about the general subject before

making sense of the details [13,14].

Based on the above intuition, we take a fresh look at the IE problem and

convert it to be a structured prediction task, where IE annotations are uniformly

represented as information networks, and the goal of extraction becomes to in-



8

English Chinese

3. cross-lingual dependencies

2. cross-doc dependencies

entity mentions

relations events

1. cross-component dependencies

Figure 1.1: Overview of the main objectives of this thesis.

crementally extract the information networks from each sentence with local and

non-local features. Using this framework, we can overcome the aforementioned

limitations and capture: (i) The interactions among multiple components.

Taking the sentence “The tire maker still employs 1,400.” as an example, we aim

to extract “tire maker” as an Organization (ORG) entity mention, “1,400” as a

Person (PER) entity mention, their Employment-Organization (EMP-ORG) rela-

tion, and the Start-Position event triggered by “employ”. Although it can be

difficult for a mention extractor to extract “1,400” as a Person (PER) mention,

the context word “employs” between “tire maker” and “1,400” strongly indicates

an Employment-Organization (EMP-ORG) relation, which must involve a PER men-

tion. Similarly, in the sentence “From Michigan, Bush flies to Morgantown, West

Virginia.”, the Physical (PHYS) relation indicated by “flies to” between “Bush”

and “Morgantown” can be used to infer “Morgantown” as a Geopolitical Entity

(GPE) mention. (ii) The global features of the entire structure. The hidden

IE structures often retain linguistic and logical constraints. And the local predic-

tions are often dependent on one another. We can make use of global features or

soft constraints to capture the dependencies of multiple nodes and edges in the

output structures. For example, in the sentence “US forces in Somalia, Haiti and

Kosovo ...”, we can design a global feature to ensure that the relations between

“forces”, and each of the entity mentions “Somalia/GPE” and “Kosovo/GPE”, are of

the same type (Physical (PHYS), in this case). Experimental results on ACE cor-

pora showed the advantage of this joint framework, and demonstrated the benefits
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of performing global inference. The resultant model can jointly extract entity men-

tions, relations and events, and achieved state-of-the-art performance in each stage

of the extraction.

We then go beyond sentence level to make use of cross-document dependen-

cies. When we extract entities and their relations from a large corpus by using

sentence-level extractors, there are often many erroneous and conflicting results.

For example, when performing on 381,588 news documents from Global Autonomous

Language Exploitation (GALE) corpora, a state-of-the-art single-document IE sys-

tem produces more than 10 different incorrect country or region names to indicate

where “Osama Bin Laden” was located. However, there exist a lot of dependencies

among facts that are scattered from multiple documents. To improve the quality

of extraction in a cross-document setting, we developed an Integer Linear Program-

ming (ILP) based inference system to remove incorrect IE results by taking into

account local confidence values, frequencies across documents, and a set of global

constraints. For example, in a baseline result, “George W. Bush” may be detected

as the member of both “Republican Party” with high confidence and “Hamas” with

low confidence, while these two organizations are located in different regions (United

States vs. Palestine). Based on one possible global constraint that an organization

and its members are unlikely to locate in different regions, we can determine that

“George W. Bush” is unlikely to be a member of “Hamas”.

Finally we break languages barriers by making use of cross-lingual dependen-

cies. We consider name tagging as a case study to improve IE for parallel corpora.

Effectively extracting and aligning names from bilingual data is important to var-

ious NLP and information access applications, such as named entity translation

template [15], statistical word alignment [16], machine translation (MT) [17], cross-

lingual IE (CLIE) [18] and many more. We argue that each language-specific tagger

has its own advantages and disadvantages, and the features and resources from two

languages are often complementary. For example, English person name tagging can

utilize capitalization features while Chinese cannot; on the other hand Chinese per-

son names are restricted to some certain characters while English translations are

lack of this indicative feature [19]. We propose two novel bilingual name tagging
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approaches based on conditional random fields (CRF) to make use of cross-lingual

dependencies. The first approach is based on linear-chain CRF with cross-lingual

features. The second approach jointly models each pair of sentences by introducing

bilingual factors based on word alignment. Therefore the predictions from the two

languages can mutually enhance each other to make more coherent predictions.

1.3 Related Publications

Some of the research work presented in this thesis has been published in the

following peer-reviewed conference papers:

• Joint name tagging for bilingual corpora: [20,21]. [20] developed joint bilingual

name tagging methods for parallel corpus. [21] applied the resulting tagger to

improve name-aware machine translation.

• Cross-document inference for IE: [22]. [22] conducted cross-document informa-

tion for relation and event predicates of entities based on an ILP formulation.

• Joint extraction of multiple IE elements: [23–25]. [23] developed the first

joint model for ACE event trigger extraction and argument labeling. [24]

applied segment-based decoding to perform joint extraction of entity mentions

and relations. [25] summarized the formulation of information networks, and

developed a system that combines [23] and [24]. To the best of our knowledge,

this is the first work of jointly extracting the three fundamental IE components.

1.4 Thesis Structure

The remaining content of this thesis will be organized as follows: We will begin

by overviewing the related work in the literature in Chapter 2. Chapter 3 presents

the joint IE framework in detail, and describes the evaluation results on ACE’04

and ACE’05 corpora. Then we move to the cross-document inference in Section 4.

Chapter 5 presents the algorithms for joint bilingual name tagging and its intrinsic

and extrinsic evaluation results. Finally Chapter 6 will conclude this thesis and

highlight some future research directions.



CHAPTER 2

Related Work

2.1 Entity Mention Extraction, Relation Extraction, and

Event Extraction

IE techniques have advanced from rule-based to statistical and machine learning-

based approaches. Rule-based methods use hand-coded patterns to extract infor-

mation. While it is easy to implement and debug, they heavily rely on developers’

heuristic and require lot of manual labor [26]. It usually has good precision but

comparably low recall. Machine learning based approaches, on the other hand, are

trainable, adaptable and extensible. With the development of human annotated

corpora, machine learning based approaches have achieved significant progress.

Entity mention extraction and name tagging are commonly casted to sequen-

tial labeling problems in machine learning based methods. Nymble [27] is the first

machine-learning based name tagger. It was trained from human-annotated corpus

with a variant of Hidden Markov model (HMM), where each entity type is repre-

sented by a hidden state. Discriminative models such as Maximum Entropy Markov

model (MEMM) and Conditional Random Fields (CRF) are then introduced to the

task of name tagging and entity mention extraction [28–31]. Different from HMM,

discriminative models directly model p(y|x), the conditional distribution of label

sequence y given the input sequence x. Therefore they can explore more expres-

sive features based on the entire sentence. Most prior work only use local features.

Portions of this chapter previously appeared as: Q. Li, H. Li, H. Ji, W. Wang, J. Zheng, and
F. Huang, “Joint Bilingual Name Tagging for Parallel Corpora,” in Proc. Int. Conf. on Inform.
and Knowledge Manage., Maui, HI, 2012, pp. 1727–1731.
Portions of this chapter previously appeared as: Q. Li, H. Ji, and L. Huang, “Joint event extraction
via structured prediction with global features,” in Proc. Annu. Meeting of the Assoc. for Compu-
tational Linguistics, Sofia, Bulgaria, 2013, pp. 73–82.
Portions of this chapter previously appeared as: Q. Li and H. Ji, “Incremental joint extraction of
entity mentions and relations,” in Proc. Annu. Meeting of the Assoc. for Computational Linguis-
tics, Baltimore, MA, 2014, pp. 402–412.
Portions of this chapter previously appeared as: Q. Li, H. Ji, Y. HONG, and S. Li, “Constructing
information networks using one single model,” in Proc. Conf. on Empirical Methods in Natural
Language Process., Doha, Qatar, 2014, pp. 1846–1851.

11
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There are a few exceptions. For example, Finkel et al. [32] applied Gibbs sampling

to incorporate non-local features. Krishnan et al. [33] introduced a two-stage system

to make use of local decisions from the first stage.

Relation extraction is naturally considered to be a binary or multi-class clas-

sification problem. Some common classification algorithms have been used in this

task. For example, [34] applied Maximum Entropy classifier (a.k.a. multi-class lo-

gistic regression) to ACE relation extraction. [11] used Support Vector Machine

(SVM) and [35–38] studied kernel methods for this task. [39] systematically studied

lexical, syntactic and semantic features for this task, [9] further explored various

background knowledge, and [10] used syntactico-semantic information to improve

relation extraction in ACE corpus.

Similar to relation extraction, event Extraction is usually defined as a series

of binary or multi-class classification problems [40–42]. First, event trigger iden-

tification and classification is performed to extract event triggers and determine

types. Then given a pair of previously extracted trigger and entity mention, ar-

gument identification and classification is applied to decide whether they have a

argument relation and determine the argument role. Finally, an additional classifier

may be employed to decide whether an extracted event mention is reportable or

not [12]. SVM and Maximum Entropy classifiers are the most popular classification

algorithms for these sub-tasks.

2.2 Utilizing Dependencies Across Languages

Some recent work has explored name tagging for parallel data. [43] presented

a sequence of cost models to learn name translation pairs. This approach greatly

relies on language-specific information such as repeated strings from both languages

and capitalization clues. [44] proposed an approach to extract bilingual name pairs.

Their method extracted names from each language first, and then computed the cost

scores based on name tagging, name transliteration and word translation to rank

candidate name pairs. [45] extended their ranking method by incorporating bilin-

gual alignment, bilingual type re-assignment and monolingual candidate certainty.

[46] described a joint inference model to improve entity extraction and translation.
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All of these previous approaches can still be considered as adding a post-processing

step after two isolated name taggers. In contrast, we develop a joint CRF approach

to jointly perform name tagging on sentence pairs by using word alignment.

2.3 Joint Event Extraction

Most recent studies about ACE event extraction rely on staged pipeline that

consists of separate local classifiers for trigger extraction and argument labeling

[6–8, 12, 20, 40–42]. As far as we know, this thesis is the first attempt to jointly

model these two ACE subtasks. For MUC and ProMed corpora, [47] proposed a

probabilistic framework to extract event role fillers conditioned on the sentential

event occurrence. Besides having different task definitions, the key difference from

our approach is that the role filler recognizer and the sentential event recognizer are

trained independently but combined in the test stage.

There has been some previous work on joint modeling for biomedical events [48–

51]. [50] is most closely related to our work. They casted the problem of biomedical

event extraction as a dependency parsing problem. The key assumption that event

structure can be considered as trees is inapplicable in ACE event extraction. In

addition, they used a separate classifier to predict the event triggers before apply-

ing the parser, while we extract the triggers and argument jointly. Moreover, the

features in the parser are edge-factorized. To exploit global features, they applied

a MaxEnt based global re-ranker. In comparison, the joint framework developed

in this thesis is based on beam-search, which allows us to exploit arbitrary global

features efficiently. In addition, our framework is also capable of extracting entity

mentions jointly with event structures.

2.4 Joint Extraction of Entity Mentions and Relations

Entity mention extraction (e.g., [29, 52–55]) and relation extraction (e.g.,

[35–39,56–60]) have drawn much attention in recent years but were usually studied

separately. Most relation extraction work assumed that entity mention boundaries

and/or types were given. [10] reported the best results in ACE corpus using system-

predicted entity mentions.
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Some previous work used relations and entity mentions to mutually enhance

each other in joint inference frameworks, including re-ranking [61], Integer Linear

Programming (ILP) [62–64], and Card-Pyramid Parsing [65]. [66] extended the

ILP-based method to IQPs (Integer Quadratic Programs) formulation to better

incorporate soft constraints. All these work noted the advantage of exploiting com-

ponent interactions and using richer knowledge. But they used models separately

learned for the two subtasks. In addition, the ILP-based framework can only ex-

ploit hand-coded hard constraints. In the IQPs formulation, penalty weights for soft

constraints need to be tuned based on experiments in development set. As a key

difference, our joint framework perform both joint training and decoding, and the

weights for various global features can be learned during the training phase.

2.5 Other Joint Modeling Methods

The work of this thesis is largely motivated by the well-known research of

constrained conditional models [62, 63, 67, 68], and also related to some other pre-

vious joint inference methods such as dual decomposition [69], and joint modeling

methods based on probabilistic graph models (e.g., hierarchical conditional random

fields [70, 71] and Markov logic networks [72–74]) which have been applied to var-

ious NLP tasks [20, 48, 49, 51, 62, 64, 65, 75, 76, 76–86]. Structured perceptron has

been successfully used in other NLP tasks such as part-of-speech tagging and de-

pendency parsing [87–89]. Although dependency parse tree can also be viewed as

a graph structure, our task differs from dependency parsing in that structures in

information extraction are more flexible, where each node can have arbitrary re-

lation and/or event arcs. [75, 90, 91] used structured perceptron and beam-search

for jointly predicting word segmentation, part-of-speech tagging, and dependency

parsing. [92] generalized perceptron-like structured algorithms, and introduced the

SEARN (shorthand of “search-learn”) framework. Based on whether the models for

multiple tasks are jointly learned, or separately learned but combined by performing

joint inference in the test phase, all of the aforementioned methods can be roughly

categorized into two types:

• Joint Learning Algorithms. The model for multiple tasks is jointly learned.
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Model parameters for the subtasks affect one and another during training.

probabilistic graph models [70–74] and search-based models [75,90–92] belong

to this category.

• Joint Inference Algorithms. The models for different tasks are separately

learned. They are connected to each other by a joint inference component

during the test. Dual decomposition [69] and constrained conditional mod-

els [62, 63,67,68] fall into this category.



CHAPTER 3

Joint Information Extraction Framework with Structured

Prediction and Inexact Search

In this chapter, we present the framework that jointly extracts multiple IE compo-

nents within a sentence based on structured prediction and inexact search. We will

show that in addition to extracting multiple facts simultaneously, the dependencies

across local decisions can be captured by applying various non-local features.

3.1 Problem Definition and Motivation

The research problem that we are addressing here is the three fundamental

tasks in information extraction: namely entity mention extraction, relation extrac-

tion, and event extraction. In the past years, each of them has been widely but

separately studied. By contrast, we take a fresh look at those sub-tasks, and rise a

research question: can the three subtasks be addressed by using a single joint model,

and can the performance benefit from joint extraction?

Let us consider the entity mention and relation annotations depicted in Fig-

ure 3.1. From the sentence “The tire maker still employs 1,400”, we aim to extract

“tire maker” as an Organization (ORG) entity mention, “1,400” as a “Person

(PER)” entity mention, and their Employment-Organization (EMP-ORG) relation.

A typical pipeline of end-to-end relation extraction consists of entity mention bound-

ary identification, entity type classification and relation extraction. Similarly, a

common pipeline of event extraction is composed of event trigger identification and

classification, argument identification, and argument role classification. We argue

Portions of this chapter previously appeared as: Q. Li, H. Ji, and L. Huang, “Joint event
extraction via structured prediction with global features,” in Proc. Annu. Meeting of the Assoc.
for Computational Linguistics, Sofia, Bulgaria, 2013, pp. 73–82.
Portions of this chapter previously appeared as: Q. Li and H. Ji, “Incremental joint extraction of
entity mentions and relations,” in Proc. Annu. Meeting of the Assoc. for Computational Linguistics,
Baltimore, MA, 2014, pp. 402–412.
Portions of this chapter previously appeared as: Q. Li, H. Ji, Y. HONG, and S. Li, “Constructing
information networks using one single model,” in Proc. Conf. on Empirical Methods in Natural
Language Process., Doha, Qatar, 2014, pp. 1846–1851.
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The tire maker| {z }
ORG

still employs 1,400| {z }
PER

.

EMP-ORG

(a) Example of Interactions between Two Tasks.

... US|{z}
GPE

forces| {z }
PER

in Somalia| {z }
GPE

, Haiti|{z}
GPE

and Kosovo| {z }
GPE

.

EMP-ORG

PHYS

conj and
GPE

PER

GPE

PHYSPH
YS

conj and

(b) Example of Global Dependencies.

Figure 3.1: Examples of entity mention and relation extraction from
ACE’04 corpus.

that such a pipelined approach has the following limitations: First, it prohibits

the interactions between components. Errors in upstream components are propa-

gated to the downstream classifiers, often resulting in compounding errors. The

downstream components, however, cannot impact earlier decisions with feedback.

Second, it over-simplifies the whole task as a set of multiple local classifiers without

taking into account long-distance dependencies.

On the other hand, when skilled human readers distill information from doc-

uments, they do not predict different types of facts step by step in a “bottom-up”

fashion; instead, they tend to take a “top-down” approach - attempting to compre-

hend content and predict high-level information through the lens of prior knowledge

about the general subject before making sense of the details [13,14]. Psycholinguis-

tic research on incremental sentence processing (such as [93]) suggests that sentences

are interpreted and disambiguated by human readers in a incremental fashion. Par-

tial interpretations of what has been observed are made incrementally until the end

of each sentence. Therefore, we convert the whole task to be a structured pre-

diction task. By jointly extracting the information structures, we can break the

aforementioned limitations by capturing:

1. The interactions among multiple tasks. Take Figure 3.1a as an example, al-

though it could be difficult for a mention extractor to predict “1,400” as a

Person (PER) mention, the context word “employs” between “tire maker”
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Asif Mohammed Hanif detonated explosives in Tel Aviv

AttackPerson Weapon Geopolitical Entity

Place

Instrument
Attacker

Agent-Artifact

Physical

x1 x2 x3 x4 x5 x6 x7 x8x:

y:

Figure 3.2: Information network representation. Information nodes are
denoted by rectangles. Arrows represent information arcs.

and “1,400” strongly indicates a EMP-ORG relation which must involve a PER

mention. Similarly, in Figure 3.1a, the Physical (PHYS) relation indicated

by “flies to” between “Bush” and “Morgantown” can be used to infer “Mor-

gantown” as a Geopolitical Entity (GPE) mention.

2. The global features of the graph structure. The hidden IE structures often

retain linguistic and logical constraints. and local predictions are often depen-

dent on one another. We can make use of global features or soft constraints

to capture the dependencies of multiple nodes and edges in the output struc-

tures. For example, in Figure 3.1b, we can design the depicted graph feature

to ensure that the relations between “forces”, and each of the entity mentions

“Somalia/GPE” and “Kosovo/GPE”, are of the same type (Physical (PHYS), in

this example).

Furthermore, we introduce a new representation for the task of information

extraction. We formulate the IE output of each sentence as an information network

y(x) = (V,E), where V corresponds to information nodes, and E is the set of typed

edges between each pair of nodes.

1. Information Node. Each node vi ∈ V is represented as a triple 〈pi, qi, ti〉 of

start index pi, end index qi, and node type ti. A node can be an entity mention

or an event trigger. A particular type of node is ⊥ (neither entity mention nor

event trigger), whose maximum length is always 1.

2. Information Edge. Similarly, each information edge ej ∈ E is represented as
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〈pj, qj, rj〉, where pj and qj are the end offsets of the nodes, and rj is the edge

type. An edge can either be a relation between a pair of entity mentions, or

an argument link between an event trigger and an entity mention.

For instance, in Figure 3.2, the event trigger “detonated” is represented as 〈4, 4, Attack〉,
the entity mention “Asif Mohammed Hanif ” is represented as 〈1, 3, Person〉, and

their argument edge is 〈4, 3, Attacker〉. The goal of IE then becomes to extract the

whole information network y for a given sentence x.

In this chapter, we use Lentity∪Ltrigger∪{⊥} to denote the node label alphabet,

where Lentity represents the set of 7 main entity types, Ltrigger is the 33 event sub-

types, and ⊥ indicates that the token is not a trigger. Similarly, Rarg ∪Rrel ∪ {⊥}
denotes the edge label sets, where Rrel represents the set of directed relation types,

Rarg is the set of possible argument roles and directed relation types, and we over-

ride ⊥ to indicate that the pair of information nodes does not have any relation or

argument link. The same relation type with different directions is considered as two

types in Rrel. For example, the binary relation “Part-whole (mentiona, mentionb)”

and “Part-whole (mentiona, mentionb)” are two different relations.

In Section 3.2, we overview the baseline system that represents traditional

pipelined approaches. Section 3.3 describes the framework that extracts information

networks in detail.

3.2 Baseline Systems

In order to compare our proposed framework with traditional pipelined ap-

proaches, we developed a set of pipelined classifiers for extracting entity mentions,

relations, and event mentions, respectively. All of the baseline classifiers are sep-

arately trained with the annotations for each subtask. In the test phase, these

classifiers are cascaded together as a pipeline to predict each type of information

sequentially. In our experiments on ACE corpora, they achieved comparable per-

formance of state-of-the-art. Figure 3.3 demonstrates an overview of the pipelined

architecture of the three IE sub-tasks. In order to obtain event arguments or rela-

tions, one has to classify boundaries and types of entity mentions beforehand.
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Input Sentence
Entity Mention

Boundaries + Types

Relation Extraction

Event Extraction

Triggers + Arguments

Kiichiro Toyoda
founded the automaker

PER Kiichiro Toyoda

ORG automaker

Relation: ORG-AFF

arg-1 PER Kiichiro Toyoda

arg-2 ORG automaker

Event: Start-Org

trigger founded

agent PER Kiichiro Toyoda

org ORG automaker

Figure 3.3: Overview of pipelined approach.

3.2.1 Entity Mention Classifier

We convert the problem of entity mention extraction to a sequential token

tagging task as in the state-of-the-art system [52]. We applied the BILOU scheme,

where each tag means a token is Beginning, Inside, Last, Out of, and Unit of an

entity mention, respectively. As an example, the following table shows the BILOU

tags for each token in the sentence in Figure 3.3:

y Kiichiro Toyoda founded the automaker

x B-PER L-PER O O U-ORG

Then we can train a linear-chain Conditional Random Fields (CRF) model [94] to

predict the tag for each token. We use the Mallet [95] implementation of CRF in

our experiments. Most of our features are similar to the work of [29,52] except that

we do not have their gazetteers and outputs from other mention detection systems

as features. Our additional features are as follows:

• Governor word of the current token based on dependency parsing [96].

• Prefix of each word in Brown clusters learned from TDT5 corpus [56].
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3.2.2 Relation Classifier

Given a sentence with entity mention annotations, the goal of the baseline

relation extraction is to classify each pair of mentions into one of the pre-defined

relation types with direction or ⊥ (non-relation). Theoretically we can employ any

popular multi-class classification algorithm to classify the relations, among which

Support Vector Machine (SVM) [97] and Maximum Entropy (MaxEnt) model are

usually used in the prior work for relation extraction and often yield comparable

performance. We chose MaxEnt model and its implementation in Mallet for our

experiments. Most of our relation extraction features are based on the previous

work of [11] and [34]. We designed the following additional features:

• Sequence of phrase labels for the sub-sentence covering the two mentions. For

example, for the sentence in Figure 3.1a, the sequence is “NP,VP,NP”. We also

augment it by head words of each phrase.

• Four syntactico - semantic patterns described in [9].

• We replicated each lexical feature by replacing each word with its Brown clus-

ter prefix [56].

3.2.3 Event Mention Pipeline

Most state-of-the-art approaches [6–8] used sequential pipelines as building

blocks for event mention extraction, which break down the whole task into many

separate subtasks, such as trigger identification/classification and argument identi-

fication/classification. Chen and Ng [42] have proven that performing identification

and classification in one step is better than two steps. We implemented two Max-

Ent classifiers for trigger labeling and argument labeling respectively. The detailed

description about the features is summarized in Figure 3.1 and Figure 3.2.

3.3 Joint Extraction Framework

In this chapter, we aim to extract information networks of multiple IE compo-

nents via joint structured prediction, along with arbitrary global features estimated

from training stage. In this way, various IE annotations can be coherently extracted
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Table 3.1: Features in event trigger detection.

Category Feature Description

Lexical

1. unigrams/bigrams of the current and context words
within the window of size 2
2. unigrams/bigrams of pos tags of the current and context
words within the window of size 2
3. lemma and synonyms of the current token
4. base form of the current token extracted from Nomlex
[98]
5. Brown clusters of the current token [99]

Syntactic

6. dependent and governor words of the current token
7. dependency types associated the current token
8. whether the current token is a modifier of job title
9. whether the current token is a non-referential pronoun

Entity
Information

10. unigrams/bigrams normalized by entity types
11. dependency features normalized by entity types
12. nearest entity type and string in the sentence or clause

Table 3.2: Features in event argument labeling.

Category Feature Description

Basic

1. context words of the entity mention
2. trigger word and type
3. entity type, subtype and entity role if it is a geo-political entity
mention
4. entity mention head, and head of any other name mention from
co-reference chain
5. lexical distance between the argument candidate and the trigger
6. the relative position between the argument candidate and the
trigger: {before, after, overlap, or separated by punctuation}
7. whether it is the nearest argument candidate with the same
type
8. whether it is the only mention of the same entity type in the
sentence

Syntactic

9. dependency path between the argument candidate and the
trigger
10. path from the argument candidate and the trigger in parse tree
11. length of the path between the argument candidate and the
trigger in dependency graph
12. common root node and its depth of the argument candidate
and parse tree
13. whether the argument candidate and the trigger appear in the
same clause
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Kiichiro Toyoda

founded the automaker

PERz }| {
Kiichiro Toyoda

Start-Orgz }| {
founded the

ORGz }| {
automaker

Joint Search Algorithm

argmax
y02Y(x)

w> · f(x, y0)

Beam: Inexact Search

Search Space: Exponentially Large

OrgAgent

ORG-AFF

x ŷ

Figure 3.4: Overview of joint extraction framework.

at the same time in a joint search space. Figure 3.4 illustrates an overview of the

framework. Taking an English sentence x as input, the framework employs beam

search to efficiently search for the best hypothesis of information network ŷ under the

model parameters w. An information network can include multiple types of annota-

tions, such as entity mentions (e.g., PER mention “Kiichiro Toyoda” and ORG mention

“automaker”), relations (e.g., ORG-AFF relation), and events (e.g., Start-Org event

triggered by “founded”). Different from the baseline systems depicted in Figure 3.3,

those annotations are extracted jointly with a single model. In this section, we

describe the training and decoding methods for the joint framework in detail.

3.3.1 Structured Perceptron with Beam Search

We apply structured perceptron to estimate model parameters w from training

data. Structured perceptron, proposed in [87], is an extension to the standard linear

perceptron for structured prediction. It has been successfully applied in many other

Natural Language Processing (NLP) tasks, such as parsing [87, 89], part-of-speech

tagging [91], and word segmentation [75, 90]. Given an input instance x ∈ X ,

which in IE tasks can often be a sentence with partial annotations, the structured

perceptron finds the best configuration of the structure z ∈ Y(x) by the following

linear model:

z = argmax
z′∈Y(x)

w> · f(x, z′) (3.1)

where f(x, z) represents the feature vector that characterizes configuration z for

instance x, and w is the corresponding weights vector. We will show that we not
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only use local features, but also exploit a variety of global features in our tasks.

In order to estimate the weight parameters in the model, the algorithm ap-

plies an on-line updating schedule. Let D = {(x(j), y(j))}nj=1 be the set of training

instances (where i denotes the index of the current training instance). In each iter-

ation, the algorithm uses the linear function defined in Eq. (3.1) to search for the

best configuration z for the input sentence x under the current parameters. If z

is incorrect, then the parameters are updated such that the features of the current

instance are moved towards the gold-standard y, and against z:

wnew = w + f(x, y)− f(x, z) (3.2)

In addition to the simple perceptron update, we also apply k-best MIRA method [100],

an online large-margin learning algorithm. During each update, it keeps the norm

of the change to feature weights w as small as possible, and forces the margin be-

tween y and the k-best candidate z greater or equal to their loss L(y, z). It can be

formulated as a quadratic programming problem:

minimize ‖wnew −w‖ (3.3)

subject to w>new · (f(x, y)− f(x, z)) ≥ L(y, z)

∀z ∈ bestk(x,w)

We use coordinate descent algorithm to solve it. Comparing with perceptron update,

k-best MIRA has several advantages: it is flexible in using various loss functions,

it is a large-margin approach, and can use multiple candidate structures to tune

feature weights.

The key step of the training and test is the decoding procedure, which aims to

search for the best configuration under the current parameters. In simpler tasks such

as part-of-speech tagging and noun phrase chunking, efficient dynamic programming

algorithms (such as Viterbi algorithm) can be employed to perform exact inference.

Unfortunately, it is intractable to perform the exact search in our framework because:

1. the search space becomes much more complex when multiple IE components
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Standard Update: Invalid Update

Early Update:

Use prefixes for update

Fix Violation

gold standard

final 1-best in beam

1-best during search

Figure 3.5: Example of early update in beam search. In this toy exam-
ple, each rectangle represents the beam search that maintains
three candidates at each step.

are jointly extracted.

2. we propose to make use of arbitrary global features, which makes it infeasible

to perform exact inference efficiently.

As a tradeoff between optimality and efficiency, in this framework we employ

beam-search, an instance of inexact search, to approximate Eq.3.1. Since the search

is bounded by the beam size, and the final top candidate is not guaranteed to be

globally optimal, the original learning procedure of perceptron may lead to invalid

updates. To avoid this problem we adopt the early-update mechanism for training.

Early-update mechanism was first introduced in [88], and [101] later proved the

convergence property and formalized a general framework named violation-fixing

perceptron. Figure 3.5 demonstrates the difference between the standard update and

early update in beam search. In the standard update, the gold-standard assignment

y may fall out of the beam at some point during the search, but its final model score

can be higher than the model score of the top candidate z in the beam. This leads

to an invalid update [101]. Early update, on the other hand, stops searching when

the gold-standard y falls out of the beam, and uses prefix configurations for update.

This strategy forms a violation fixing update, and leads less noisy to the parameter

estimation compared to standard update.

Figure 10 describes the skeleton of the perceptron training algorithm with
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Input: training set D = {(x(j), y(j))}Nj=1, maximum iteration number T
Output: model parameters w

1 initialize w,wa ← 0
2 c← 1
3 for t← 1...T do
4 foreach (x, y) ∈ D do
5 (x, y′, z)← BEAMSEARCH (x, y,w)
6 if z 6= y then
7 w← w + f(x, y′)− f(x, z)
8 wa ← wa + c(f(x, y′)− f(x, z))

9 c← c+ 1

10 return w← w −wa / c

Figure 3.6: Perceptron learning algorithm with beam-search and early-
update. y′ is the prefix of the gold-standard and z is the top
assignment in beam.

beam search. The update function can be replaced by k-best MIRA method in

E.q.(3.3). Finally, to reduce overfitting, we use averaged parameters after training

to decode test instances in our experiments. The resulting model is called averaged

perceptron [87, 102]. Let wt
j be the weight vector from t-th (t = 1...T ) iteration

and j-th (j = 1..N) instance during the training. The final averaged weight vec-

tor is (
∑

j,t

wt
j)/(N · T ). It is very expensive to compute it directly, therefore we

implemented an efficient method described in [92] to calculate the averaged vector.

As shown in Figure 10, at each step, the algorithm maintains the original weight

vector w, as well as a bias vector wa and a decay variable c. And the final averaged

parameter vector equals w −wa / c.

Given this learning algorithm, the remaining challenge of developing a joint

extraction framework is to design an efficient and effective search algorithm, and

exploit informative features to capture the patterns of the hidden structures.

3.3.2 Decoding Algorithms

Based on the formulation of Information Networks, in general there are two

types of actions during the decoding:

1. Node Step. Search for information nodes such as entity mentions and event
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triggers.

2. Edge Step. Search for typed edges between each pair of nodes, such as relations

and event argument links.

During the beam search, it is necessary to synchronize all candidates at each step

so that they can be evaluated and ranked fairly. In the setting of name tagging, the

decoding problem is commonly considered to be a sequential labeling task with BIO

or BILOU scheme [31,52], where each sentence is regarded as a sequence of tokens. In

this chapter, we are aiming to go beyond name tagging and jointly perform decoding

for multiple sub IE tasks. As a result, it cannot be simply approached by sequential

labeling. However, the input, namely a sentence, can still be viewed as a sequence

of tokens. Hence, one straightforward decoding strategy is to extend the sequential

labeling schema. From left to right, at each step of the search, the algorithm absorbs

a token, makes analysis of the prefix, and propose partial structures (such as entity

type, relation, event trigger etc.) to the token. We refer to this strategy as token-

based decoding algorithm as the search is synchronized by token indices.

The token-based method is simple but has some limitations. Consider the task

of jointly extracting entity mentions and their relations. If at each step, we assign

a token with one of BIO or BILOU labels, it is unfair to compare the model scores

of a partial mention and a complete mention during beam search. It is even more

difficult to synchronize the search process of relations. For example, consider the

two hypotheses ending at “York” for the same input sentence “Allen from New York

Stock Exchange”:

AllanU-PER from? NewB-FAC YorkI-FAC Stock Exchange

AllanU-PER from? NewB-GPE YorkL-GPE

PHYS

PHYS not parsed yet

Assuming the algorithm is processing the token “York”, and the rest of the sentence

has not been parsed yet in both cases. The model would bias towards the incorrect
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Table 3.3: Comparison between token-based decoding and segment-
based decoding with examples of entity mention extraction.

Method Example on Entity Mention Extraction Time Complexity

Token-based
(Florian et. al., 2006)

(Ratinov & Roth, 2009)

Segment-based
(Sarawagi & Cohen, 2004)

(Zhang & Clark, 2008)

The tire maker still employs 1,400

? B-ORG L-ORG ? ? U-PER

The tire maker still employs 1,400

ORG PER

O(n)

n is number of tokens.

O(n · d)
d is the maximal length of

entity mentions.

assignment “New/B-GPE York/L-GPE” since it can have more informative features as a

complete mention (e.g., a binary feature indicating if the entire mention appears in

a GPE gazetteer). Furthermore, the predictions of the two PHYS relations cannot be

synchronized since “New/B-FAC York/I-FAC” is not yet a complete mention. To

tackle these problems, we employ the idea of semi-Markov chain [103], in which

each state corresponds to a segment of the input sequence. They presented a vari-

ant of Viterbi algorithm for exact inference in semi-Markov chain. We relax the

max operation by beam-search, resulting in a segment-based decoder similar to the

multiple-beam algorithm in [75]. Let d̂ be the maximum length of information nodes.

The k-best partial assignments ending at the i-th token can be calculated as:

B[i] = bestk
z′∈{z[1..i]|z[1:i−d]∈B[i−d], d=1...d̂}

w> · f(x, z′)

where z[1:i−d] stands for a partial configuration ending at the (i-d)-th token, and

z[i−d+1,i] stands for an information node over the new segment from index (i−d+ 1)

to i. We refer to this method as segment-based decoding algorithm. Table 3.3 shows

comparisons between the token-based and the segment-based methods. We can see

that the segment-based decoding has greater time complexity. And when d equals

1, it is identical to the token-based method.
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3.3.3 Global Feature vs. Local Feature

One novelty of our framework is the use of global features to capture long-

distance and cross-component dependencies. Traditional pipelined approaches to

information extraction can only use local features to characterize single units in the

output structures. For example, an event argument classifier classifies the type of

each argument instance independently, therefore it is only based on features of each

individual instance. Making decisions on one candidate does not affect another.

For entity mention detection, linear-chain Markov model such as CRF is commonly

used, where the distribution of each sentence is factorized to a sequence of local

factors, therefore it is difficult to exploit long-distance dependencies. By contrast,

we propose to exploit arbitrary global features to flexibly capture the properties

of the entire output structure. In this way, local decisions can affect each other

through the information captured by global features. Here we define the global

features as the features involve multiple local decisions, which are independently

made by multiple local classifiers in pipelined approaches. For example, consider

the two hypotheses of Attack event triggered by “fired” in the same sentence:

In Baghdad| {z }
GPE-NAM

, a cameraman| {z }
PER-NOM

died when an American tank| {z }
VEH-NOM

fired on the Palestine Hotel| {z }
FAC-NAM

.

TargetPlace

In Baghdad| {z }
GPE-NAM

, a cameraman| {z }
PER-NOM

died when an American tank| {z }
VEH-NOM

fired on the Palestine Hotel| {z }
FAC-NAM

.

Place
Place

The first structure is correct, while the second one mistakenly labels “Palestine

Hotel” as a Place argument to “fired”. It is unusual that one event trigger can have

multiple Place arguments. By encoding this common knowledge as a global feature,

we can promote the structure that has only one Place argument, or penalize the one

with multiple Place arguments. Although adding arbitrary global features makes

the global inference intractable, inexact inference methods, such as beam-search,

make it feasible while sacrificing optimality. In the experiments we will show that,

in practice, beam-search can work very well.



30

3.3.4 Entity Type Constraints

Table 3.4: Examples of entity-type constraints in ACE’05 corpus.

Event/Relation Type Argument Role Entity Types

Transport

Agent PER ORG GPE

Artifact PER WEA VEH

Vehicle VEH

Be-Born
Person PER

Place GPE LOC FAC

Attack

Attacker PER ORG GPE

Target PER ORG VEH FAC WEA LOC

Instrument WEA VEH

Place GPE LOC FAC

PHYS
Arg-1 PER FAC GPE LOC

Arg-2 FAC LOC GPE

PER-SOC
Arg-1 PER

Arg-2 PER

Entity type constraints have been shown useful in predicting relations [9, 63].

For instance, according to the ACE’05 annotation guideline, only PER entity can

participate in PER-SOC relation. Similarly, the event structures also must follow a

certain constraints. Some event arguments are general to all kinds of events, such as

place and time arguments. Most arguments, on the other hand, are event-specific.

For example, Be-Born events have Person argument slots, while Attack events have

Attacker, Instrument, and Target slots. In addition, each type of argument slot

can only be filled by entity mentions with some particular types. For example,

Person arguments can only be fulfilled by PER mentions, while Attacker can be

PER, ORG, or GPE mentions. Table 3.4 shows some typical examples of entity type

constraints in ACE’05 corpus.

Instead of applying the constraints in post-processing inference, we can prune

the branches that violate type constraints during the search, so that the constraints

can be applied in both training and test phases. The pruning can largely reduce the

search space as well as make the input for parameter update less noisy. If the entity

type constraints are clearly defined by the task definition, we can manually create a

frame that resembles Table 3.4. In the case that there does not exist any clear type

constraints in the task definition, we can collect these information automatically

from training data.
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3.4 Token-based Decoding

In Baghdad| {z }
GPE

, a cameraman| {z }
PER

died when an American tank| {z }
VEH

fired on the Palestine Hotel| {z }
FAC

.

AttackDie

Instrument

Place

Victim

Target
Instrument

Target

Place

Figure 3.7: Example of event mentions. There are two event mentions
that share three arguments: the Die event mention triggered
by “died”, and the Attack event mention triggered by “fired”.

Given an English sentence with and argument candidates such as ACE entity

mention, value, and temporal expression annotations, we can apply the token-based

decoding algorithm to extract the event triggers and their arguments jointly. Fig-

ure 3.7 depicts an example that contains two event mentions and five entity men-

tions. More formally, let x = 〈(x1, x2, ..., xs), E〉 denote the sentence instance, where

xi represents the i-th token in the sentence and E = {ek}mk=1 is the set of argument

candidates (such as entity mentions, values, and temporal expressions). The goal of

joint event extraction is to predict the corresponding hidden event structure from

x:

y = (t1, a1,1, ..., a1,m, ..., ts, as,1, ..., as,m)

where ti represents the trigger assignment for the token xi, and ai,k represents the

argument role label for the edge between xi and argument candidate ek.

y = (t1, a1,1, a1,2, t2, a2,1, a2,2,| {z }
arguments for x2

t3, a3,1, a3,2)

g(1) g(2) h(2, 1) h(3, 2)

Figure 3.8: Example notation with s = 3,m = 2.

For simplicity, throughout this chapter we use yg(i) and yh(i,k) to represent ti and

ai,k, respectively. Figure 3.8 demonstrates the notation with s = 3 and m = 2. The
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Input: Instance x = 〈(x1, x2, ..., xs), E〉 and the oracle output y if for
training.

k: Beam size.
Ltrigger ∪ {⊥}: trigger label alphabet.
Rarg ∪ {⊥}: argument role alphabet.
Output: Top prediction z for x

1 Set beam B ← [ε] /* empty configuration */

2 for i← 1...s do
3 buf ← {z ◦ l | z ∈ B, l ∈ Ltrigger ∪ {⊥}} B ← k-best(buf )
4 if y[1:g(i)] 6∈ B then
5 return B[0] /* for early-update */

6 for ek ∈ E do
7 buf ← ∅ /* search for arguments */

8 for z ∈ B do
9 buf ← buf ∪ {z ◦ ⊥}

10 if zg(i) 6= ⊥ then
11 buf ← buf ∪ {z ◦ r | r ∈ Rarg} /* xi is a trigger */

12 B ← k-best(buf )
13 if y[1:h(i,k)] 6∈ B then
14 return B[0] /* for early-update */

15 return B[0]

Figure 3.9: Token-based decoding algorithm. z◦l means appending label l
to the end of z. During test, lines 4-5 & 13-14 are omitted.

variables for the toy sentence “Jobs founded Apple” are as follows:

x = 〈(Jobs,

x2︷ ︸︸ ︷
founded, Apple),

E︷ ︸︸ ︷
{JobsPER,AppleORG}〉

y = (⊥,⊥,⊥, Start-Org︸ ︷︷ ︸
t2

, Agent, Org︸ ︷︷ ︸
args for founded

,⊥,⊥,⊥)

Typical event extraction systems, such as [6, 7], take each token as a unit

to identify and classify event triggers. Based on this strategy, we design a token-

based decoding algorithm to jointly search for event triggers and their arguments.

The search process is indexed by the token number. In each step, the algorithm

absorbs a token in order, make event type hypotheses about this token, and then

classifies the relation between argument candidates and the newly identified trigger

in a left-to-right manner. Figure 3.9 describes the decoder with early-update.
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There are two types of actions at each token:

1. Node (Trigger) Action: (line 3) Assign trigger labels for the current token. The

linear model defined in Eq. (3.1) is used to score each partial configuration. Then

the k-best partial configurations are selected to the beam.

2. Edge (Argument) Action: (line 11) Link arguments to new trigger. Once a

trigger label for xi is found in the beam, the decoder searches through the set

of argument candidates E to label the edges between each argument candidate

and the trigger. The assignments are re-ranked after labeling each argument

candidate, and k-best results are selected to the beam.

There are s steps of node actions in total for a sentence. And each of them is

followed by m steps of edge actions. It is easy to show that the overall decoding

time complexity is O(k · s ·m).

3.4.1 Decoding Example

Taking a simplified version of the sentence in Figure 3.7 as an example, Fig-

ure 3.10 illustrates several steps of the decoding algorithm, where the blue lines and

words indicate the current step, and the red words indicate the correct types in each

step. For clarity, it only shows one entry in the beam at each step. There are 5 to-

kens and 2 entity mentions, therefore s = 5 and m = 2. At Figure 3.10a, we assume

that the index i = 6, and the algorithm is making prediction about the trigger label

of “died”. There are multiple hypothesis, among which Die is the correct assign-

ment. After setting Die as trigger label for “died”, it continues to predict the edge

label between “died” and the PER mention “cameraman” (Figure 3.10b). Among

other candidates, Victim is the correct assignment. Next, the edge label between

“died” and the GPE mention “Baghdad” is determined from all possible candidates

(Figure 3.10c). Lastly, the final structure is obtained.

3.5 Segment-based Decoding

Our final goal is to automatically extract entity mentions, relations and events

from raw texts. More formally, let x = (x1, x2, ..., xs) be a sentence instance, where

xi represents the i-th token. The goal is to extract y, the annotations of entity
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In Baghdad| {z }
GPE

, a cameraman| {z }
PER

died

1. Die

2. ?
3. Attack
4. ...

(a) Step 13

In Baghdad| {z }
GPE

, a cameraman| {z }
PER

died

Die

1. Victim
2. Agent

3. ?
4. ...

(b) Step 14

In Baghdad| {z }
GPE

, a cameraman| {z }
PER

died

Die

Victim 1. Place
2. ?
3. Victim
4. ...

(c) Step 15

In Baghdad| {z }
GPE

, a cameraman| {z }
PER

died

Die

Place

Victim

(d) Final structure

Figure 3.10: Example of decoding steps.

mentions, relations, and events for x. In our formulation of information networks,

the entity mentions or event triggers in the output structure y can be expressed as

a list of nodes (v1, ..., vm), where each segment vi = 〈pi, qi, ti〉 is a triple of start

index pi, end index qi, and node type ti. And each relation or event argument link

ej is an information edge between a pair of entity mentions, and can be denoted by

〈pj, qj, rj〉, where pj and qj are the end offsets of its nodes, and rj is the edge type

(relation type or event argument role). Figure 3.2 in Section 3.1 gave an example

about the notation of the information networks, we skip concrete examples here.

We employ the segment-based decoding algorithm to incorporate entity men-

tions and relations into the joint framework. Let d̂ be the upper bound of entity

mention length. The joint decoding algorithm is shown in Figure 3.11. For each

token index i, it maintains a beam for the partial assignments whose last segments
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Input: input sentence x = (x1, x2, ..., xs).
k: beam size.
Lentity ∪ Ltrigger ∪ {⊥}: node type alphabet.
Rrel ∪Rarg ∪ {⊥}: edge type alphabet.5

dt: max length of type-t segment, t ∈ Lentity ∪ Ltrigger.
Output: best configuration z for x

1 initialize m empty beams B[1..m]
2 for i← 1...m do
3 for t ∈ Lentity ∪ Ltrigger ∪ {⊥} do
4 for d← 1...dt, y

′ ∈ B[i− d] do
5 q ← i− d+ 1

/* start offset */

6 B[i]← B[i] ∪ APPEND(y′, t, q, i) /* append new segment */

7 B[i]← bestk(B[i])
8 for j ← (i− 1)...1 do
9 buf ← ∅

10 for z′ ∈ B[i] do
11 if HASPAIR(z′, i, j) then
12 for r ∈ Rrel ∪Rarg ∪ {⊥} do
13 buf ← buf ∪ LINK(z′, r, i, j) /* create new edge */

14 else
15 buf ← buf ∪ {z′}
16 B[i]← bestk(buf )

17 return B[m][0]

Figure 3.11: Segment-based decoding algorithm. HASPAIR(z′, i, j) checks
if there are two information nodes in z′ that end at token
xi and token xj, respectively. APPEND(z′, t, k, i) appends z′

with a type-t segment spanning from xk to xi. Similarly
LINK(z′, r, i, j) creates a new assignment from z′ by assigning
a directed edge with type r to the pair of nodes ending at
xi and xj respectively.

end at the i-th token. Therefore the search is synchronized by the last token of each

segment. There are two types of actions during the search:

1. Node Action (Lines 3-7). First, the algorithm enumerates all possible segments

(i.e., subsequences) of x ending at the current token with various node types. A

special type of segment is a single token with negative label (⊥). Each segment is

then appended to the existing partial assignments in one of the previous beams

to form new assignments. Finally the top k results are recorded in the current
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beam.

2. Edge Action (Lines 8-16). After each step of node action, the algorithm looks

backward to link the newly identified information nodes and previous ones (if

any) with information edges. At the j-th sub-step, it only considers the previous

mention ending at the j-th previous token. Therefore different configurations are

guaranteed to have the same number of sub-steps. Finally, all assignments are

re-ranked with the new edge information.

The maximum length of each type of node d̂t is collected from the training data

at the beginning of the training procedure. The following table summarizes the

maximum length of each type of node in our experiments. We can see that the

numbers that we collected from our training data are larger than or equal to those

in our test data. Among others, ORG has the longest mentions such as “Pearl River

Hang Cheong Real Estate Consultants Ltd”.

Node Type
Max Length

Node Type
Max Length

Train Test Train Test

Event or ⊥ 1 1 GPE 5 4

PER 6 6 ORG 8 6

WEA 4 2 VEH 4 4

LOC 3 2 FAC 6 5

For entity type constraints, we automatically collected a mapping table of

permissible entity types for each relation type from our training data. In our ex-

periments, only 7 relation mentions (0.5%) in the development set and 5 relation

mentions (0.3%) in the test set violate the constraints collected from the training

data. As for events, the manual annotation in the ACE’05 corpus strictly obeys

entity type constraints declared in the official annotation guideline. Therefore we

simply created a mapping table based on the official annotation guideline.

There are m steps of node actions. The inner loop of node action executes

at most d̂ · k times. At each token xi, i − 1 times of edge action are performed.

As such, the worst-case time complexity of this algorithm is O(d̂ · k · s2), where d̂

5The same relation type with opposite directions is considered to be two classes in R.
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Figure 3.12: Example of decoding steps. x-axis and y-axis represent the
input sentence and target node types, respectively.

is the upper bound of segment length. It is worth noting that this framework can

be viewed as a generalized version of the algorithm described in Figure 3.9. If each

segment’s length is 1, the process assembles the token-based decoder.

3.5.1 Decoding Example

Comparing with the token-based decoder in the previous section, the segment-

based decoding is more complex but flexible. Here we demonstrate a simple but

concrete example by considering again the sentence described in Figure 3.1a. Fig-

ure 3.12 visualizes several key steps, where the rectangles denote nodes with partic-

ular types, among which the shaded ones are three competing hypotheses at each

step. The solid lines and arrows indicate correct node and edge actions respectively,

while the dashed indicate incorrect ones. For simplicity, only a small part of the

search space is presented. At the very beginning, let us assume that the prefix “the
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tire” has already been parsed, and “the/⊥ tire/⊥” is one of the assignments in the

buffer. In the next step, we predict possible nodes ending at the token “maker”.

Figure 3.12b shows three possible candidates: “(tire maker)/ORG”, “(tire maker)/PER”,

and “maker/⊥”. They are then appended to their preceding partial configurations

respectively as illustrated by the three lines.

As we continue, suppose we are at the token “1,400” (Figure 3.12c and 3.12d).

At this point we can propose multiple nodes ending at this token with various

lengths. Assuming “1,400/PER”, “1,400/⊥” and “(employs 1,400)/PER” are three pos-

sible assignments, the algorithm then appends them to the partial assignments in

the buffers of the tokens “employs” and “still”, respectively. The algorithm then

links the newly identified nodes to the previous ones in the same configurations. In

this example, the only preceding mention is “(tire maker)/ORG”. Finally, “1,400/PER”

will be preferred by the model since there are more indicative context features for

EMP-ORG relation between “(tire maker)/PER” and “1,400/PER”. By connecting the

path of solid lines and arrows we obtain the final structure in Figure 3.1a.

3.6 Features

We develop two types of features, namely local features and global features. We

first introduce the definition of local and global features in this chapter respectively,

and then describe the implementation details later. Recall that in the linear model

defined in Eq. 3.1, f(x, y) denotes the features extracted from the input instance x

along with configuration y. In general, each feature instance f in f is a function

f : X ×Y → R that maps x and y to a feature value. Local features are only related

to the predictions on individual triggers or arguments. In the case of unigram

tagging for trigger labeling, each local feature takes the form of f(x, i, yg(i)), where i

denotes the index of the current token, and yg(i) is its trigger label. In practice, it is

convenient to define the local feature function as an indicator function, for example:

f101(x, i, yg(i)) =





1 if yg(i) = Attack and xi = “fire”

0 otherwise
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The global features, by contrast, involve longer range of the output structure. For

example, each global feature function can take the form of f(x, i, k, y), where i

and k denote the indices of the last token of the current node, and the index of an

argument candidate or a previous entity mention for edge classification, respectively.

The following indicator function is a simple example of global features:

f201(x, i, k, y) =





1 if yg(i) = Attack and

y has only one Attacker

0 otherwise

This feature function is triggered when the current token is classified as an

Attack trigger, and it only has one Attacker argument so far.

3.6.1 Local Features

In general there are four kinds of local features: trigger features (token-based),

event argument features, entity mention features (token-based and segment-based),

and relation features. The input part of the features except token-based entity men-

tion features are identical to those described in our baseline systems in Section 3.2.

3.6.1.1 Trigger Features

The local feature function for trigger labeling can be factorized as f(x, i, yg(i)) =

p(x, i) ◦ q(yg(i)), where p(x, i) is a predicate about the input, which we call text fea-

ture, and q(yg(i)) is a predicate on the trigger label. In practice, we define two

versions of q(yg(i)):

q0(yg(i)) = yg(i) (event subtype)

q1(yg(i)) = event type of yg(i)

q1(yg(i)) is a backoff version of the standard unigram feature. Some text features

for the same event type may share a certain distributional similarity regardless

of the subtypes. For example, if the nearest entity mention is a “Company”, the

current token is likely to be Personnel no matter whether it is End-Position or
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Figure 3.13: Distribution of triggers and their frames.

Start-Position.

One major challenge of constructing information networks is the data sparsity

problem in extracting event triggers. For instance, in the sentence: “Others were

mutilated beyond recognition.” The Injure trigger “mutilated” does not occur in

our training data. But there are some similar words such as “stab” and “smash”.

We utilize FrameNet [104] to solve this problem. FrameNet is a lexical resource for

semantic frames. Each frame characterizes a basic type of semantic concept, and

contains a number of words (lexical units) that evoke the frame. Many frames are

highly related with ACE events. For example, the frame “Cause harm” is closely

related with Injure event and contains 68 lexical units such as “stab”, “smash” and

“mutilate”. Figure 3.13 compares the distributions of trigger words and their frame

identifiers in the training data. We can clearly see that the trigger word distribu-

tion suffers from the long-tail problem, while Frames reduce the number of triggers

which occur only once in the training data from 100 to 60 and alleviate the sparsity

problem. For each token, we exploit the frames that contain the combination of its

lemma and POS tag as features. For the above example, “Cause harm” will be a

feature for “mutilated”. We only consider tokens that appear in at most 2 frames,

and omit the frames that occur fewer than 20 times in our training data.
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3.6.1.2 Argument Features

Similarly, the local feature function for argument labeling can be represented as

f(x, i, k, yg(i), yh(i,k)) = p(x, i, k) ◦ q(yg(i), yh(i,k)), where yh(i,k) denotes the argument

assignment for the edge between trigger word i and argument candidate ek. We

define two versions of q(yg(i), yh(i,k)):

q0(yg(i), yh(i,k)) =





yh(i,k) if yh(i,k) is Place,

Time or ⊥

yg(i) ◦ yh(i,k) otherwise

q1(yg(i), yh(i,k)) =





1 if yh(i,k) 6= ⊥

0 otherwise

It is notable that Place and Time arguments are applicable and behave similarly

to all event subtypes. Therefore features for these arguments are not conjuncted

with trigger labels. q1(yh(i,k)) can be considered as a backoff version of q0(yh(i,k)),

which does not discriminate different argument roles but only focuses on argument

identification.

3.6.1.3 Entity Mention Features

In the segment-based algorithm, we can use segment-based features to directly

evaluate the properties of each entity mention instead of the individual tokens it

contains. This is more natural way of modeling entity mentions than traditional

token-based tagging such as [52]. The following is an example of segment-based

feature:

f001(x, y, i) =





1 if x[y.pi,ŷ.qi] = tire maker

y.t(i−1), y.ti = ⊥,ORG

0 otherwise

This feature is triggered if the labels of the (i − 1)-th and the i-th segments are

“⊥,ORG”, and the text of the i-th segment is “tire maker”.
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1. Gazetteer features
Entity type of each segment based on matching a number of gazetteers in-
cluding persons, countries, cities and organizations.

2. Case features
The capitalization information about the segment, one of initial-capitalized,
lower case, or mixture.

3. Contextual features
The unigrams and bigrams of the text and part-of-speech tags in the window
of size 2. Example: for “tire maker” in the example figure, w(2) = employs.

4. Parsing-based features
Features that are derived from constituent parse tree.

• Phrase label of the common ancestor of the entity mention’s tokens. Ex-
ample: the phrase label of “tire maker” is NP.
• Depth of the common ancestor of the entity mention’s tokens. Example:

the depth of “tire maker” is 1 in the parse tree.
• The entity mention exactly matches a base phrase or is a suffix of the

phrase. Example: “tire maker” is a suffix of a NP phrase
• The head words of the entity mention and its neighbor phrases. Example:

head(tire maker) = maker, and head1(tire maker) = still.

the tire maker still employs 1,400

S

DT NN NN RB VBZ CD

NP ADVP VP

NP

Figure 3.14: Segment-based local entity mention features.

Furthermore, we can still obtain token-based features by converting each entity

triple 〈pi, qi, ti〉 to BILOU tags for each token within it. For instance, the entity

mention “(tire maker)ORG” has B-ORG, L-ORG tags for the two tokens within it. The

token-based features then are expressed by combination of contextual features of

each token and bigram of the current and previous token tags. The segment-based

entity mention features with an example sentence “the tire maker still employs 1400”

are described in Figure 3.14.



43

3.6.2 Global Features

As we mentioned earlier, in addition to local features, we are interested in

exploiting various global features. In this task, local features are only related to

the predictions on individual triggers or arguments. They are identical to the fea-

tures that we can make use of in local classifiers of the pipelined approach. Global

features, on the contrary, involve longer range of the output structure, and usually

engage multiple event triggers (global trigger features), or argument edges (global

argument features), entity mentions (global entity features), or relations (global

relation features).

3.6.2.1 Global Trigger Features

This type of feature captures the dependencies between two triggers within

the same sentence. Table 3.5 summarizes the global features about triggers that we

developed in our study.

Table 3.5: Global trigger features.

ID Feature Description

1. bigram of trigger types occur in the same sentence or the same clause
2. binary feature indicating whether synonyms in the same sentence have

the same trigger label
3. context and dependency paths between two triggers conjuncted with

their types

For instance: feature (1) captures the co-occurrence of trigger types. This kind

of feature is motivated by the fact that two event mentions in the same sentence

tend to be semantically coherent. As an example, from Table 3.6 we can see that

Attack event often co-occur with Die event in the same sentence, but rarely co-

occur with Start-Position event. Feature (2) encourages synonyms or identical

tokens to have the same label. Feature (3) exploits the lexical and syntactic relation

between two triggers. A simple example is whether an Attack trigger and a Die

trigger are linked by the dependency relation conj and.
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Table 3.6: Top five event subtypes that co-occur with Attack event. Event
triggers are highlighted by underscores.

Event Type Probability Example

Attack 0.34 it would not commit fighting forces to the war.

Die 0.14 destroyed a command and control post and killed a

number of soldiers.

Transport 0.08 The mob killed them with machetes and spears before

fleeing the area.

Injure 0.04 Two Marines were injured in the close-quarters

fighting.

Meet 0.02 Portugal hosted a last ditch pre-war summit in the

Azores islands.

3.6.2.2 Global Argument Features

This type of feature is defined over multiple arguments for the same or dif-

ferent triggers. Table 3.5 summarizes the global features about arguments that we

developed in our experiments.

Table 3.7: Global argument features.

ID Feature Description
1. context and dependency features about two argument candidates which

share the same role within the same event mention
2. features about one argument candidate which plays as arguments in two

event mentions in the same sentence
3. features about two arguments of an event mention which are overlapping
4. the number of arguments with each role type of an event mention con-

juncted with the event subtype
5. the pairs of time arguments within an event mention conjuncted with

the event subtype

Consider the following sentence:

Example 3.6.1. Trains running to southern Sudan were used to transport abducted

women and children.

The Transport event mention “transport” has two Artifact arguments, namely

“women” and “children”. The dependency edge conj and between “women” and

“children” indicates that they should play the same role in the event mention. The

triangle structure in Figure 3.15a is an example of feature (1) for the above example.
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This feature encourages entities that are linked by dependency relation conj and to

play the same role Artifact in any Transport event.

Similarly, Figure 3.15b depicts an example of feature (2) for the sentence:

Example 3.6.2. In Baghdad, a cameraman died when an American tank fired on

the Palestine Hotel.

In this example, an entity mention is Victim argument to Die event and

Target argument to Attack event, and the two event triggers are connected by the

typed dependency advcl. Here advcl means that the word “fired” is an adverbial

clause modifier of “died” [105].

Figure 3.15c shows an example of feature (3) for the following sentence:

Example 3.6.3. Barry Diller resigned as co-chief executive of Vivendi Universal

Entertainment.

The job title “co-chief executive of Vivendi Universal Entertainment” overlaps

with the Organization mention “Vivendi Universal Entertainment”. The feature in

the triangle shape can be considered as a soft constraint such that if a Job-Title men-

tion is a Position argument to an End-Position trigger, then the Organization

mention that appears at the end of it should be labeled as an Entity argument for

the same trigger.

Feature (4-5) are based on the statistics about different arguments for the same

trigger. For instance, in many cases, a trigger can only have one Place argument. If

a partial configuration mistakenly classifies more than one entity mention as Place

arguments for the same trigger, then it will be penalized.

3.6.2.3 Global Entity Mention Features

The following features involve multiple entity mentions are extracted once a

new segment is appended during the decoding.

Coreference consistency

Coreferential entity mentions should be assigned the same entity type. We

determine high-recall coreference links between two segments in the same sentence

using some simple heuristic rules:
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Figure 3.15: Illustration of the global features in Table 3.7 for the sen-
tences “Barry Diller resigned as co-chief executive of Vivendi Uni-
versal Entertainment” and “In Baghdad, a cameraman died when
an American tank fired on the Palestine Hotel.”

• String values of the two segments exactly or partially match. For example,

“Obama” and “Barack Obama” have a partial match.

• A pronoun (e.g., “their”, “it”) refers to previous entity mentions. For example,

in “they have no insurance on their cars”, “they” and “their” should have the

same entity type.

• A relative pronoun (e.g., “which”, “that”, and “who”) refers to the noun phrase

it modifies (if they are dominant by the same clause node in the parsing tree).

For example, in “the starting kicker is Nikita Kargalskiy, who may be 5,000

miles from his hometown in Russia”, “Nikita Kargalskiy” and “who” should

both be labeled as persons.

Then we encode a global feature to check whether two coreferential segments

share the same entity type. This feature is particularly effective for pronouns because

their contexts alone are often not informative.

Neighbor coherence

Neighboring entity mentions tend to have coherent entity types. For example,

in “Barbara Starr was reporting from the Pentagon”, “Barbara Starr” and “Pen-

tagon” are connected by a dependency link prep from and thus they are unlikely to

be a pair of PER mentions. We consider two senses of neighbor: (i) the first entity

mention before the current segment, and (ii) two segments are connected by a single
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word or a dependency link. We take the entity types of the two segments and the

linkage as a global feature.

Part-of-whole consistency

If an entity mention is syntactically part of another mention (connected by

a prep of dependency link), they should be assigned the same entity type. For

example, in “some of Iraq’s exiles”, “some” and “exiles” are both PER mentions;

in “one of the town’s two meat-packing plants”, “one” and “plants” are both FAC

mentions; in “the rest of America”, “rest” and “America” are both GPE mentions.

3.6.2.4 Global Relation Features

Relation edges can also share inter-dependencies or obey soft constraints. We

extract the following relation-centric global features when a new relation hypothesis

is made during decoding.

Role coherence

If an entity mention is involved in multiple relations with the same type, then

its roles should be coherent. For example, a person mention is unlikely to have more

than one employer. However, a GPE mention can serve as a physical location for

multiple entity mentions. We combine the relation type and the entity mention’s

argument roles as a global feature, as shown in Figure 3.16a.

Triangle constraint

Multiple entity mentions are unlikely to be fully connected with the same

relation type. We use a negative feature to penalize any configuration that contains

this type of structure. An example is shown in Figure 3.16b.

Inter-dependent compatibility

If two entity mentions are connected by a dependency link, they tend to have

compatible relations with other entities. For example, in Figure 3.16c, the conj and

dependency link between “Somalia” and “Kosovo” indicates they may share the

same relation type with the third entity mention “forces”.
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Figure 3.16: Examples of global relation features.

Table 3.8: Frequent overlapping relation and event types.

Freq. Relation Type Event Type Arg-1 Arg-2 Example

159 Physical Transport Artifact Destination He(arg-1) was escorted(trigger) into
Iraq(arg-2).

46 Physical Attack Target Place Many people(arg-1) were in
the cafe(arg-2) during the
blast(trigger).

42 Agent-Artifact Attack Attacker Instrument Terrorists(arg-1) might use(trigger)

the devices(arg-2) as weapons.
41 Physical Transport Artifact Origin The truck(arg-1) was

carrying(trigger) Syrians flee-
ing the war in Iraq(arg-2).

33 Physical Meet Entity Place They(arg-1) have reunited(trigger)

with their friends in
Norfolk(arg-2).

32 Physical Die Victim Place Two Marines(arg-1) were
killed(trigger) in the fighting
in Kut(arg-2).

28 Physical Attack Attacker Place Protesters(arg-1) have been
clashing(trigger) with police in
Tehran(arg-2).

26 ORG-Affiliation End-Position Person Entity NBC(arg-2) is terminating(trigger)

freelance reporter Peter
Arnett(arg-1).

Neighbor coherence

Similar to the entity mention neighbor coherence feature, we also combine the

types of two neighbor relations in the same sentence as a bigram feature.

3.6.2.5 Joint Relation-Event Feature

By extracting the three fundamental IE components in a joint search space, we

can utilize joint features over multiple components in addition to factorized features

in pipelined approaches. For instance, we can make use of joint features between

relations and events, given the fact that relations are often ending or starting states

of events [106]. Table 3.8 shows the most frequent overlapping relation and event

types in our training data. In each partial structure y′ during the search, if both



49

VBG:7.35%

VBD:11.62%

JJ:2.70%

NNS:10.07%

VBP:1.59%

NN:36.55%

NNP:1.19%

VB:11.30%

VBN:14.79%

Others:2.83%

(a) Distribution of POS Tags

POS Example

NN the candidate for the nomination
NNS suffering damages

NNP War in Iraq
VDB she died
VBG doctors are leaving

VBN who have been harmed by
VB going to demonstrate against them

VBP they leave Iraq
JJ an American retired general

(b) Examples

Figure 3.17: Distribution of event trigger w.r.t. POS tags.

arguments of a relation participate in the same event, we compose the corresponding

argument roles and relation type as a joint feature for y′. For example, for the

structure in Figure 3.2, we obtain the following joint relation-event features:

Attacker Instrument

Agent-Artifact

Attacker Place

Physical

3.7 Experiments

Our evaluation consists of three parts: In sub-section 3.7.2 we first evaluate the

performance of the token-based decoder under the setting that argument candidates

are given. In sub-section 3.7.3 we extract entity mentions and relations by using the

segment-based decoder to create an end-to-end relation extraction system, and con-

duct experiments on both ACE’04 and ACE’05 corpus. Finally, in sub-section 3.7.4

we add event triggers and arguments to the framework to construct a complete joint

model, and conduct experiments only on ACE’05 corpus, since ACE’04 corpus does

not contain any event annotations.

3.7.1 Evaluate Setup

We first conduct experiments to evaluate the joint framework with the token-

based decoder, where the argument candidates are given by either gold-standard

annotation or system prediction. For this purpose, we use the ACE’05 corpus as our
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test-bed. And for a fair comparison, we used the same test set with 40 newswire ar-

ticles (672 sentences, 440 events, 703 arguments) as in [6,7] for the experiments, and

randomly selected 30 other documents (863 sentences, 505 events, 806 arguments)

from different genres as the development set. The rest 529 documents (14.8k sen-

tences, 4.4k events, 6.6k arguments) are used for training. It is worth noting that

the trigger words of events can be of many different part-of-speech tags besides

verb. Figure 3.17 illustrates the distribution of event triggers with respect to part-

of-speech tags. In fact, the majority of triggers are noun (62.6%) and verb (46.6%),

but there exist some exceptions such as adjective (JJ), pronoun (PRP), and adverb

(RB). JJ accounts for 2.7% of triggers, and others only account for 2.8%. Following

previous work [6–8], we use the following criteria to determine the correctness of an

event mention in system output.

• A trigger is correct if its event subtype and offsets match those of a reference

trigger.

• An argument is correctly identified if its event subtype and offsets match those

of any of the reference argument mentions.

• An argument is correctly identified and classified if its event subtype, offsets

and argument role match those of any of the reference argument mentions.

Finally we use Precision (P), Recall (R) and F-measure (F1) to evaluate the overall

performance.

Then, we evaluate the joint framework with the segment-based decoder that

jointly extract entity mentions, relations and events. Most previous work on ACE

relation extraction has reported results on ACE’04 data set. ACE’05 made signifi-

cant improvement on both relation type definition and annotation quality. Therefore

we present the overall performance of our approaches on ACE’05 data. We removed

two small subsets in informal genres cts (conversation telephone speech) and un

(Usenet web forum), and then randomly split the remaining 511 documents into

3 parts: 351 for training, 80 for development, and the rest 80 for blind test. In

order to compare with state-of-the-art systems we also performed the same 5-fold

cross-validation on bnews and nwire subsets of ACE’04 corpus as in previous work.

The statistics of these data sets are summarized in Table 3.9. We ran the Stanford
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CoreNLP toolkit6 to automatically recover the true cases for lowercased documents.

We use the standard F1 measure to evaluate the performance of entity mention ex-

Table 3.9: Statistics about data set.

Data Set # sentences # mentions # relations # triggers # arguments

ACE’05
Train 7,2k 26.4k 4,8k 2.8k 4.5k
Dev 1,7k 6.3k 1.2k 0.7k 1.1k
Test 1.5k 5.4k 1.1k 0.6k 1.0k

ACE’04 6.8k 22.7k 4.4k N/A N/A

traction and relation extraction. An entity mention is considered correct if its entity

type is correct and the offsets of its mention head are correct. A relation mention is

considered correct if its relation type is correct, and the head offsets of two entity

mention arguments are both correct. As in [10], we excluded the DISC relation type,

and removed relations in the system output which are implicitly correct via coref-

erence links in order to conduct a fair comparison. Furthermore, we combine these

two criteria to evaluate the performance of end-to-end entity mention and relation

extraction.

3.7.2 Results of Token-based Decoding

We use the harmonic mean of the trigger’s F1 measure and argument’s F1

measure to evaluate the performance on the development set. Figure 3.18 shows the

training curves of the averaged perceptron with respect to the performance on the

development set when the beam size is 8. As we can see both curves converge around

iteration 20 and the global features improve the overall performance, compared to

its counterpart with only local features. Therefore we set the number of iterations

as 20 in the remaining experiments.

The beam size is an important hyper parameter in both training and test.

Larger beam size will increase the computational cost while smaller beam size may

reduce the performance. Table 3.10 shows the performance on the development set

with several different beam sizes. When beam size = 8, the algorithm achieved

the highest performance on the development set with trigger F1 = 68.7, argument

F1 = 51.8, and harmonic mean = 59.1. When the size is increased to 32, the accuracy

6http://nlp.stanford.edu/software/corenlp.shtml (Date Last Accessed, March, 10, 2015)
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Figure 3.18: Training curves on development set.

Table 3.10: Comparison of training time and accuracy on dev set.

Beam size 1 2 4 8 16 32

Training time (sec) 579 1,228 2,509 5,040 10,279 20,215
Harmonic mean 57.5 57.8 58.6 59.1 57.8 58.6

was not improved. There may be two reasons: 1) The overfilling problem. When

we have larger beam, the search capacity during the training is larger. But this

cannot directly effect the performance on a blind test data. 2) Since the whole task

is quite challenging and even the annotation quality is limited, many easy instances

can already be handled when the beam size is relatively small. But increasing the

beam size does not improve the chance of solving difficult instances.

Based on this observation, we chose beam size as 8 for the rest experiments. Ta-

ble 3.11 shows the overall performance on the blind test set. Our pipelined baseline

outperforms the sentence-level system reported in previous work [6–8]. Among those

[8] used the ground-truth entity information in the ACE corpus. The joint frame-

work with local features outperforms the pipelined baseline especially on arguments,

and adding global features further significantly improved the overall performance.

In addition to the standard data splitting, we also tested our methods in the

setting of 5-fold cross-validation. For this experiment, we only chose news (nw) and

broadcast news (bn) subsets so as to rule out domain shifts caused by other informal



53

Table 3.11: Overall performance with gold-standard argument candi-
dates (entity mention, ACE value, and timex).

Methods
Trigger
Identification (%)

Trigger Identification
+ classification (%)

Argument
Identification (%)

Argument
Role (%)

P R F1 P R F1 P R F1 P R F1

Sentence-level in [8] N/A 67.6 53.5 59.7 46.5 37.15 41.3 41.0 32.8 36.5
Pipelined Baseline 76.2 60.5 67.4 74.5 59.1 65.9 74.3 37.9 50.2 65.1 33.2 44.0

Joint w/ local 80.7 61.8 70.0 77.2 59.1 66.9 73.2 42.4 53.7 67.4 39.0 49.4
Joint w/ local + global 79.7 62.5 70.1 75.9 59.5 66.8 73.4 46.5 57.0 67.9 43.0 52.7

Table 3.12: Overall performance from 5-fold cross-validation.

Methods
Trigger
Identification (%)

Trigger Identification
+ classification (%)

Argument
Identification (%)

Argument
Role (%)

P R F1 P R F1 P R F1 P R F1

Pipelined Baseline 77.7 61.9 68.9 75.5 60.2 66.9 76.9 37.3 50.2 68.5 33.2 44.8

Joint w/ local 77.7 66.3 71.6 74.8 63.8 68.9 74.8 46.2 57.1 69.4 42.9 53.0
Joint w/ local + global 77.3 67.0 71.8 74.2 64.3 68.9 73.5 48.5 58.4 69.0 45.5 54.9

subsets. Table 3.12 summarizes the 5-fold cross-validation results. From this table

we can observe that the performance of the three methods have the same trend in

the previous setting. However, the overall accuracy is higher. Specifically, the F1

score of the final event argument extraction is 2.1% higher. This is because in the

standard setting 1) the training data is a mixture of different genres, and 2) the

actual test data is relatively small.
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Figure 3.19: Percentage of “invalid updates” [101] in standard percep-
tron.



54

Table 3.13: Comparison between the performance (%) of standard-
update and early-update with global features. k stands for
beam size.

Strategy
F1 on Dev F1 on Test

Trigger Argument Trigger Argument
Standard (k = 1) 68.3 47.4 64.4 49.8

Early (k = 1) 68.9 49.5 65.2 52.1
Standard (k = 4) 68.4 50.5 67.1 51.4

Early (k = 4) 67.9 51.5 67.5 52.7

Why Early Update

“Invalid update” [101] is the parameter update when the model score of the

gold-standard is higher than the score of the top-ranked hypothesis. it can reinforce

search error rather than fixing violation. It strongly (anti-)correlates with search

quality and learning quality. Figure 3.19 depicts the percentage of invalid updates

in standard-update with and without global features, respectively. With global

features, there are numerous invalid updates when the beam size is small. The

ratio decreases monotonically as beam size increases. The model with only local

features made much smaller numbers of invalid updates, which suggests that the

use of global features makes the search problem much harder. This observation

justifies the application of early-update in this work. To further investigate the

difference between early-update and standard-update, we tested the performance of

both strategies, which is summarized in Table 3.13. As we can see the performance

of standard-update is generally worse than early-update. When the beam size is

increased (k = 4), the gap becomes smaller as the ratio of invalid updates is reduced.

3.7.3 Results of End-to-End Relation Extraction

In this experiment, we develop an end-to-end relation extraction system with

the joint framework using the segment-based decoder. As we already mentioned,

generally larger beam size can yield better performance but increase training and

decoding time. As a tradeoff, we set the beam size as 8 throughout the experiments.

Figure 3.20 shows the learning curves on the development set, and compares the

performance with and without global features. From these figures we can clearly see



55

0 5 10 15 20 25

# of training iterations

0.70

0.72

0.74

0.76

0.78

0.80

F_
1

 s
co

re

mention local+global

mention local

(a) Entity Mention Performance

0 5 10 15 20 25

# of training iterations

0.30

0.35

0.40

0.45

0.50

0.55

F_
1

 s
co

re

relation local+global

relation local

(b) Relation Performance

Figure 3.20: Learning curves on development set.

that global features consistently improve the extraction performance of both tasks.

We set the number of training iterations as 22 based on these curves.

Table 3.14: Overall performance on ACE’05 corpus.

Model Entity Mention (%) Relation (%) Entity Mention + Relation (%)
Score P R F1 P R F1 P R F1

Pipelined 83.2 73.6 78.1 67.5 39.4 49.8 65.1 38.1 48.0
Joint w/ Local 84.5 76.0 80.0 68.4 40.1 50.6 65.3 38.3 48.3
Joint w/ Global 85.2 76.9 80.8 68.9 41.9 52.1 65.4 39.8 49.5
Annotator 1 91.8 89.9 90.9 71.9 69.0 70.4 69.5 66.7 68.1
Annotator 2 88.7 88.3 88.5 65.2 63.6 64.4 61.8 60.2 61.0
Inter-Agreement 85.8 87.3 86.5 55.4 54.7 55.0 52.3 51.6 51.9

Table 3.14 shows the overall performance of various methods on the ACE’05

test data. We compare our proposed method (Joint w/ Global) with the pipelined

system (Pipelined), the joint model with only local features (Joint w/ Local), and

two human annotators who annotated 73 documents in ACE’05 corpus. We can

see that our approach significantly outperforms the pipelined approach for both

tasks. The human F1 score on end-to-end relation extraction is only about 70%,

which indicates it is a very challenging task. Furthermore, the F1 score of the

inter-annotator agreement is 51.9%, only 2.4% above that of our proposed method.

Table 3.15 compares the performance on ACE’04 corpus. For entity mention

extraction, our joint model achieved 79.7% on 5-fold cross-validation, which is com-

parable with the best F1 score 79.2% reported by [52] on single-fold. However, [52]

used some gazetteers and the output of other IE models as additional features. Ac-
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Table 3.15: 5-fold cross-validation on ACE’04 corpus. Bolded scores in-
dicate highly statistical significant improvement as measured
by paired t-test (p < 0.01)

Methods Entity Mention (%) Relation (%) Entity Mention +
Relation (%)

Score P R F1 P R F1 P R F1

Chan and Roth 2011 [10] - 42.9 38.9 40.8 -
Pipelined Approach 81.5 74.1 77.6 62.5 36.4 46.0 58.4 33.9 42.9
Joint w/ Local 82.7 75.2 78.8 64.2 37.0 46.9 60.3 34.8 44.1
Joint w/ Global 83.5 76.2 79.7 64.7 38.5 48.3 60.8 36.1 45.3

cording to [29], these external IE models included name taggers trained from other

data sets such as Message Understanding Conference (MUC) corpus, and provided

significant gains (about 1.3%). Since these gazetteers, additional data sets and ex-

ternal IE models are all not publicly available, it is not fair to directly compare our

joint model with their results. For end-to-end entity mention and relation extrac-

tion, both the joint approach and the pipelined baseline outperform the best results

reported by [10] under the same setting.

3.7.4 Results of Complete Joint Model

We finally combine all of the three subtasks into a complete joint model. In this

experiment, in addition to the perceptron update method, we employ the following

three loss functions in k-best MIRA method (see Section 3.3.1):

• The first one is F1 loss. Given the gold-standard y and prediction z, it is

calculated based on overall F1 measure for a prediction:

L1(y, z) = 1− 2 · |y ∩ z|
|y|+ |z|

When counting the numbers, we treat each node or edge as a single unit. For

example, in Figure 3.2, |y| = 6.

• The second one is 0-1 loss:

L2(y, z) =





1 y 6= z

0 y = z
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It does not discriminate the extent to which z deviates from y.

• The third loss function counts the difference between y and z:

L3(y, z) = |y|+ |z| − 2 · |y ∩ z|

Similar to F1 loss function, it penalizes both missing and false-positive units.

The difference is that it is sensitive to the size of y and z.

Based on the results of our development set, we trained all models with 21

iterations and chose the beam size to be 8. For the k-best MIRA updates, we set k

as 3. Table 3.16 compares the overall performance of our approaches and baseline

methods. The joint model with perceptron update outperforms the pipelined ap-

proach in Section 3.2, and further improves the joint event extraction system in [23]

(p < 0.05 for entity mention extraction, and p < 0.01 for other subtasks, according

to Wilcoxon Signed RankTest). For the k-best MIRA update, the L3 loss function

achieved better performance than F1 loss and 0-1 loss on all sub-tasks except event

argument extraction. It also significantly outperforms perceptron update on relation

extraction and event argument extraction (p < 0.01). It is particularly encourag-

ing to see the end output of an IE system (event arguments) has made significant

progress (12.2% absolute gain over traditional pipelined approach).

The complete joint model searches for the best configuration through a very

large search space. Recall that the worst-case time complexity of this model is

O(d̂ · k · s2) (s stands for the number of tokens in the sentence), while the pipelined

approach only takes O(s) for extracting information nodes, and the number of edges

Table 3.16: Overall performance (%) on test set.

Methods
Entity
Mention

Relation
Event
Trigger

Event
Argument

P R F1 P R F1 P R F1 P R F1

Pipelined Baseline
83.6 75.7 79.5

68.5 41.4 51.6 71.2 58.7 64.4 64.8 24.6 35.7
Pipeline + Li & et al.[23] N/A 74.5 56.9 64.5 67.5 31.6 43.1
Li & Ji [24] 85.2 76.9 80.8 68.9 41.9 52.1 N/A

Joint w/ Avg. Perceptron 85.1 77.3 81.0 70.5 41.2 52.0 67.9 62.8 65.3 64.7 35.3 45.6
Joint w/ MIRA w/ F1 Loss 83.1 75.3 79.0 65.5 39.4 49.2 59.6 63.5 61.5 60.6 38.9 47.4
Joint w/ MIRA w/ 0-1 Loss 84.2 76.1 80.0 65.4 41.8 51.0 65.6 61.0 63.2 60.5 39.6 47.9
Joint w/ MIRA w/ L3 Loss 85.3 76.5 80.7 70.8 42.1 52.8 70.3 60.9 65.2 66.4 36.1 46.8
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to be classified in a pipelined approach is usually less than s since the number of

entity mentions and triggers are far less than the number of tokens (see Table 3.9).

To compare the running time of those two methods empirically, the following table

compares the running of the pipelined baseline and our joint model on the test data:

System Pipelined Baseline Joint Model (b = 1) Joint Model (b = 8)

Decoding Time (sec.) 32.5 142.8 800.1

This information is obtained by running both systems in the same computer. The

numbers excluded the time consumption of pre-processing such as part-of-speech

tagging, parsing and feature extraction. As we can see, the pure decoding time for

the joint model is significantly more than the pipelined approach, as the search space

of the latter is much larger. We leave improving the efficiency of the implementation

to future work.

Feature Study

Table 3.17: Top features about event triggers.

Rank Feature Weight
1 Frame=Killing Die 0.80
2 Frame=Travel Transport 0.61
3 Physical(Artifact, Destination) 0.60
4 w1=“home” Transport 0.59
5 Frame=Arriving Transport 0.54
6 ORG-AFF(Person, Entity) 0.48
7 Lemma=charge Charge-Indict 0.45
8 Lemma=birth Be-Born 0.44
9 Physical(Artifact,Origin) 0.44
10 Frame=Cause harm Injure 0.43

Table 3.17 lists the most significant features about event triggers ranked by

their weights. The 3rd, 6th, and 9th rows are joint relation-event features. For in-

stance, Physical(Artifact, Destination) means the arguments of a Physical relation

participate in a Transport event as Artifact and Destination. We can see that

both the joint relation-event features and FrameNet based features are of vital im-

portance to event trigger labeling. We tested the impact of each type of features by

excluding them in the experiments of “MIRA w/ L3 loss”. We found that FrameNet
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steps hypotheses rank

(a)
ha? marcher?i 1

ha? marcherPERi 2

(b)
ha? marcher? from?i 1

ha? marcherPER from?i 4

(c)
ha? marcherPER from? FloridaGPEi 1

ha? marcher? from? FloridaGPEi 2

(d)
ha? marcherPER from? FloridaGPEi

GEN-AFF

1

ha? marcher? from? FloridaGPEi 4

Figure 3.21: Two competing hypotheses for “a marcher from Florida” dur-
ing joint extraction with global features.

based features provided 0.8% and 2.2% F1 gains for event trigger and argument la-

beling respectively. Joint relation-event features also provided 0.6% F1 gain for

relation extraction.

3.7.5 Real Example

As a real example, for the partial sentence “a marcher from Florida” from the

test data, the pipelined approach failed to identify “marcher” as a PER mention,

and thus missed the GEN-AFF relation between “marcher” and “Florida”. Our joint

model correctly identified the entity mentions and their relation. Figure 3.21 shows

the details when the joint model is applied to this sentence. At the token “marcher”,

the top hypothesis in the beam is “〈⊥,⊥〉”, while the correct one is ranked the

second best. After the decoder processes the token “Florida”, the correct hypothesis

is promoted to the top in the beam by the Neighbor Coherence features for PER-

GPE pair. Furthermore, after linking the two mentions by GEN-AFF relation, the

ranking of the incorrect hypothesis “〈⊥,⊥〉” is dropped to the 4-th place in the

beam, resulting in a large margin from the correct one.
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3.8 Analysis of Human Performance

The official ACE’05 training data is produced based on the efforts of multiple

human annotators with multiple passes. To analyze the common errors of human

annotation, we check the results of the first passes of two human annotators that

prepared the ACE corpus, which includes 73 documents in total.

Entity Mention Annotation Errors

The most significant type of annotation error in entity mentions is the mention

boundary error (281 instances). Many entity mentions are combinations of several

smaller mentions. As a result, the mention structures can be very complicated, and

it is even difficult for human being to make correct judgment on their boundaries.

Some examples of this type of error are as follows:

• “a waiting shed at the Davao City international airportFAC”. The annotators

mistakenly considered the FAC mention as two separate mentions: “Davao CityGPE”

and “airportFAC”.

• “according to documents filed in Los Angeles Superior CourtORG”. The anno-

tators considered “Los Angeles” as a GPE mention, and tagged “Court” as an

ORG mention.

• “a Harvard Medical SchoolORG graduate”. The annotators considered “Har-

vard” as an ORG mention, and tagged “School” as another ORG mention.

The second remarkable type of error is the confusion between ORG and GPE (73

instances). This happens frequently when the mentions refer to the government of

a country. For instance, in the following two sentences:

• “other top KremlinGPE officials.”. “Tahrir Square” is mistakenly tagged as a

LOC mention.

• “two senior White HouseGPE officials said”. “park” is mistakenly tagged as a

LOC mention.

Both GPE mentions were tagged as ORG by the annotators. There is also confusion

between FAC and LOC (8 instances). According to the annotation guideline, FAC
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mentions are primarily man-made structures designed for human habitation, storage,

and transportation infrastructure and so on. One the other hand, LOC mentions are

geographical or astronomical concepts such as river, mountain and so on. The name

of Location is quite misleading since a building or a street is usually considered as

“locations” in our daily life. For example:

• “rallied on the city’s central Tahrir SquareFAC”. “Tahrir Square” is mistakenly

tagged as a LOC mention.

• “show up at the parkFAC at Osaka Castle in the city’s downtown”. “park” is

mistakenly tagged as a LOC mention.

There are also noticeable confusion between ORG and PER (69 instances) when

the entity mention refers to a group of people. For instance, “cabinet” refers to a

group of high-ranking members of a government. And “forces” refers to an organized

body of military personnel. They are often confused by the annotators. Moreover,

the annotations of those mentions are even inconsistent in the gold standard.

Finally, some entity mentions are frequently neglected by the annotators, such

as “White HouseGPE”, “elsewhereGPE”, “elsewhereLOC”, and “convoyVEH”.

Relation Annotation Errors

The most significant type of relation annotation error is the confusion between

ORG-AFF and GEN-AFF (41 instances). ORG-AFF cares about the employment or

affiliation relation between a PER mention and an ORG or GPE mention. GEN-AFF

cares about a person’s citizenship, residence, and religion. For instance, according

to the gold standard, the relation between “US” and “troops” in “US troops” should

be ORG-AFF, since the employer of “troops” is “US”. On the other hand, the relation

between “Iraqi” and “scientist” in “an Iraqi chemical scientist” should be GEN-AFF,

since the citizenship of “scientist” is “Iraq”. The annotators often confuse about

the above two cases. Another type of common error is the confusion between PHYS

and PART-WHOLE (16 instances). For instance:

• In “The three military checkpoints on the highway”, the relation between

“checkpoints” and “highway” is PART-WHOLE. But the annotators considered
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it to be PHYS.

• In “the area around the Tigris and Euphrates rivers”, the relation between

“rivers” and “area” is PHYS. But the annotators considered it to be PART-WHOLE.

Event Annotation Errors

Some event triggers are pronouns such as “this”, and “it”. It requires an an-

notator or an IE system to conduct event coreference. We found that the annotators

usefully perform poorly on those cases. For example, in the following sentence:

• “Nobody questions whether thisAttack is right or not”.

The annotators failed to identify “this” as an Attack trigger since it requires extra

effort to link it to an Attack event in the previous context. In addition, there exists

confusion between Die and Attack. For instance, in the following sentences:

• “The mob dragged out three members of a family and killedAttack them”.

• “alleged plot to assassinateAttack Megawati Soekarnoputri in 1999”.

The annotators mistakenly considered the Attack triggers as Die triggers (9 in-

stances), since the result of those events would be death.

For argument labeling, the annotators often made mistakes when the distance

between the argument and the trigger is long, or the argument link is implicitly

expressed. Those cases are also difficult for a learning based algorithm. For example,

in the following sentences,

• “US President George W. Bush condemned the attack on innocents in Israel.

White House spokesman Ari Fleischer said, adding that his message to the

terrorists is: Their efforts will not be successful.”.

• “the convoy was caught in a crossfire and three diplomats were hurt”.

The arguments are syntactically far from the triggers. As a result, the annotators

failed to connect them by argument links. In another sentence: “Hamas issued a

chilling warning against those taking part in the war against Iraq”, Even the distance

between “war” and “Iraq” is short, it does not explicitly entail that “Iraq” is a Place

argument of “war”. Therefore it requires inference with background knowledge.
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3.9 Analysis of Remaining Challenges

Although our system significantly improved the performance of end-to-end ex-

traction, it is far from perfect. In this section, we make analysis about the remaining

errors, and summarize them into several categories. Figure 3.22 summarizes the per-

centage of each category, which is calculated based on 200 random examples from

the experiment results.

OOV:23.53%

World Knowledge:38.82%

Other:20.00%

Phys vs Non−phys:3.53%

Pronoun Resolution:2.94%

Semantic Inference:11.18%

Figure 3.22: Distribution of different types of challenges.

Handle Out-of-Vocabulary and Sparsity Issue

OOV (shorthand for Out-of-Vocabulary) problem is a common issue in natu-

ral language processing. The task of information extraction also suffers from this

problem. In fact, the recall of our system and baseline systems is significantly lower

than the precision. In our test data, there are 654 event triggers in total, among

which 77 (11.7%) trigger words and their lemmas do not appear in the training data.

Moreover, 140 (21.5%) trigger words in the test data appear fewer than twice

in the training data. Some examples of OOV trigger words are

• people have been riotingAttack in benton harbor.

• The airdropTransport - one of the biggest paratroop drops in decades.

• he embezzledTransfer-Money hundreds of millions of dollars from aid funds.

• Marines found the mutilatedInjure body.
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• Taken the risk of supporting a Shiite insurrectionDemonstrate at that point.

• Now Willie Williams the girl’s father is qharthdCharge-Indict attempted murder.

Capture World Knowledge

Word knowledge is necessary for improving the performance of IE to a com-

pletely new level. In many cases, when annotators performing annotation, their

world knowledge plays a key role in making judgment. For example, some words act

as triggers for a certain types of events only when they appear together with some

particular arguments:

• “Williams picked up the child again and this time, threw/Attack her out the

window.” The word “threw” is used as an Attack event trigger because the

Victim argument is a “child”.

• “Ellison to spend $10.3 billion to get/Merge Org his company.” The common word

“get” is tagged as a trigger of Merge Org, because its object is “company”.

• “We believe that the likelihood of them usingAttack those weapons goes up.”

The word “using” can be considered an Attack event trigger because the

Instrument argument is “weapons”.

Distinguish Physical and Non-physical Events

Some event trigger words are used by narrators to express logical or emotional

events rather than physical events. It is difficult but important to distinguish them.

For example, in the sentence:

• “we are paying great attention to their ability to defend/Attack on the ground.”,

our system failed to extract “defend” as an Attack trigger. In the training data,

“defend” appears multiple times, but none of them is tagged as Attack. For instance,

in the sentence:

• “North Korea could do everything to defend itself. ”

“defend” is not an Attack trigger since it does not relate to physical actions in a

war. Conversely, In another example:
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• “it is still hurts me to read this.”

Our system mistakenly tagged “hurts” as an Attack trigger, but it only indicates

negative emotion. This challenge calls for deeper understanding of the contexts.

Perform Pronoun Resolution

Pronouns are used to refer to actual events. Event coreference is necessary

to recognize them correctly. For example, in the following two sentences from the

same document:

• “It’s important that people all over the world know that we don’t believe in the

war/Attack.”,

• “Nobody questions whether this/Attack is right or not.”

“this” refers to “war” in its preceding contexts. Without accurate pronoun resolu-

tion, it is difficult to recognize it as an Attack event trigger.

Perform Semantic Inference

In some cases, identifying event arguments requires sophisticated semantic

inference when there does not exist direct lexical or syntactic evidence to support

the argument edges. For example, in the following sentence:

• “Allied successes were marred by the collision of two Royal Navy helicopters

over the Persian Gulf in which all six British crew members and one American

were killed. ”

It is trivial to recognize “killed” as a trigger of Die. However, recognizing “heli-

copters” and “Persian Gulf” as its Instrument argument and Place argument is

difficult. The lexical and syntactic structure of this sentence suggests that it is

more easier to classify “helicopters” and “Persian Gulf” as arguments of “collision”,

and propagate them to “killed”. However, since “collision” is not an event defined

in ACE, even using global features is insufficient. Semantic inference is needed

to recognize the casual relation between “collision” and “killed”, and identify “heli-

copters” and “Persian Gulf” as arguments to “collision”, and finally propagate them

to “killed”. In another example:
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• Negotiations between Washington and Pyongyang on their nuclear dispute

have been set for April 23 in Beijing and are widely seen here as a blow to

Moscow efforts to stamp authority on the region by organizing such a meeting.

Our system correctly extracted “meeting” as a trigger of Meet, but failed to iden-

tify “Washington” and “Pyongyang” as its Entity arguments. If we known “Ne-

gotiations” is a sub-event of “meeting” and “Washington” and “Pyongyang” are

arguments of “Negotiations”, it would be more easier to infer that they are also

arguments of “meeting” event.

3.10 Discussion

Beginning by an overview of the baseline IE pipeline, in this chapter we intro-

duced the joint extraction framework based on a novel formulation of information

networks. We described the training method of this framework and introduced two

types of decoding algorithms: token-based decoding and segment-based decoding.

The token-based decoding is conceptually and computationally simpler than the

segment-based one. Although it can yield better performance than the traditional

pipelined approach, It can only be applied in the setting where entity mentions are

given because of the problem of synchronization. By contrast, in each step of the

segment-based algorithm, segments with various lengths ending the current token

are proposed, so that the search can be synchronized by the token indices. There-

fore, we are able to build a system that can jointly extract entity mentions, relations

and events. Within this framework, we exploited various global features to capture

the dependencies over multiple local predictions. The experiments on ACE’05 and

ACE’04 corpora showed the advantages of this new framework. Our final model

achieved state-of-the-art performance at each stage of the extraction, and outper-

forms the system using token-based decoder. To the best of our knowledge, this is

the first work that extracts the three subtasks in a joint model.



CHAPTER 4

Joint Inference for Cross-document Information Extraction

In this chapter we exploit cross-document dependencies to improve information ex-

traction from sentence-level extractors. We describe a simple yet effective approach

to conduct global inference with an Integer Linear Programming (ILP) formulation.

Without using any additional labeled data, this new method obtained 13.7%-24.4%

user browsing cost reduction over a sentence-level IE system.

4.1 Cross-document Information Extraction

First, we define the task of cross-document IE by extending the ACE termi-

nology from single document to cross-document setting as follows: given a collection

of source documents, a cross-document IE system should produce a knowledge base

of unique facts. We apply a sentence-level English ACE single-document IE sys-

tem [7] as our baseline to extract facts from individual documents. Finally we

combine entity mentions using co-reference chain and string matching to create a

cross-document information network, where each link is a specific occurrence of

relation or event predicate between two entity nodes with a local confidence value.

In the remaining part of this section, we will discuss the dependencies and con-

straints of the IE output in detail, and then present the ILP-based global reasoning

approach to enhance IE performance.

Global Dependency Constraints

We explore constraints across various types of relations and events. Let Li

denote a unique relation or event predicate linking two entities A and B. We consider

three types of dependency as depicted in Figure 4.1.

We compute point-wise mutual information (PMI) to automatically estimate

the pairwise dependency between any two types of links from ACE’05 training data:

Portions of this chapter previously appeared as: Q. Li, S. Anzaroot, W.-P. Lin, X. Li, and
H. Ji, “Joint inference for cross-document information extraction,” in Proc. Int. Conf. on Inform.
and Knowledge Manage., Glasgow, UK, 2011, pp. 2225–2228.
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Figure 4.1: Dependency constraints over entities and their links.

PMI(Li, Lj) = log
p(Li, Lj)

p(Li)p(Lj)
(4.1)

where p(Li) and p(Lj) are the frequency of Li and Lj respectively, and p(Li, Lj) is

the co-occurrence frequency of Li(A,B) and Lj(A,B) for any two entities A and B.

Similarly, we apply a multivariate generalization form of PMI [107] to measure the

triangle dependency:

PMI(Li, Lj, Lk) = log
p(Li, Lj, Lk)

p(Li)p(Lj)p(Lk)
(4.2)

For location and GPE entities, we normalize fine-grained locations to country/region

level. For instance, “Baghdad” and “Fallujah” are two cities in “Iraq”, therefore

they are considered the same place when we calculate PMI. To this end, we use

Freebase [108] to search for the country of locations such as cities and states. For

ambiguous locations, we choose the most salient countries with largest populations.

Finally if the PMI value is lower than a certain threshold (in our experiment we

used -2.0 for pairwise and -3.0 for triangle), the links are considered as incompatible

and used as a constraint for global inference.

In total we learned 34 pairwise constraints and 16 triangle constraints. Some

examples are listed in Table 4.1. For instance, “Ariel Sharon” and “Mahmoud

Abbas” are frequently involved in Contact.Meet events, so they are unlikely to be

members of the same organization according to the pairwise constraint. If “Osama

bin Laden” and “George W. Bush” are involved in a Conflict event with high confi-

dence, then they are unlikely to be the members of the same organization according
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Table 4.1: Examples of incompatible constraints.

Pairwise
Li Lj

Person A founded Organization B Organization B hired Person A
Person A has a Business relation with Person B Person A has a Person-Social relation (e.g.

family) with Person B

Triangle-Entity
Li Lj

Organization A is involved in a Jus-
tice/Conflict/Transaction event with Orga-
nization B

Person C is affiliated with or member of
both Organization A and Organization B

Triangle-Link
Li Lj Lk

Entity A is involved in a Transport event origi-
nated from Location B

Person C is affiliated
with or member of
Entity A

Person C is located in
Location B

to the triangle-entity constraint. If “Washington” and “Iraq” are involved in a

“Transport” event, then any member of “Washington” is unlikely to be located in

“Iraq” according to the triangle-link constraint.

ILP Formulation

Motivated by the constrained conditional models [62, 63, 67, 68], we take the

above constraints as hard constraints to perform the global inference. These con-

straints are designed to guarantee that the facts extracted from different documents

are consistent with each other, hence weak predictions that violate the constraints

can be filtered out.

Assuming we have a set of inter-dependent predicatesR = {ri} from a baseline

extractor. Each unique predicate ri is associated with a number of mentions ri,j

with local confidence values pi,j, where pi,j ∈ (0, 1]. From cross-document point

of view, a reliable output should have high local confidence value as well as high

global frequency. By contrast, an invalid predicate often has low frequency, simply

because some entities accidentally co-occur in mis-leading contexts. Based on this

assumption, we introduce the following objective function to incorporate those two

properties (we use ri,j to denote the j-th occurrence of a relation instance ri, and

pi,j to denote its local confidence value):

maximize
N∑

i=0

(xi ·
M∑

j=0

pθi,j) (4.3)
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where xi is a binary value :

xi =





1 if ri is selected in final output

0 if ri is removed in final output

To guarantee xi to be a binary value, the following constraint on xi should be

satisfied:

xi ∈ {0, 1} ∀xi (4.4)

where θ determines to which extent we penalize low confidence values. If θ equals

0 then any confidence value should be considered equally as 1. As θ grows, it gives

more penalty to lower confidence values. When θ = 1, pθ equals p itself. We

formulate the constraints described in section 4.1 as follows:

1. For constraints that involve three predicates, if xa, xb, and xc violate one of

the them, they must satisfy :

xa + xb + xc ≤ 2 (4.5)

2. Similarly, for constraints that involve two predicates, if xa and xb violate one

of them, they must satisfy:

xa + xb ≤ 1 (4.6)

Equation 4.3-4.6 all together constitute a Binary Linear Programming problem
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(BLP, a special case of ILP in which all variables must be binary values):

maximize
N∑

i=0

(xi ·
M∑

j=0

pθi,j)

subject to xi ∈ {0, 1} ∀xi
∀(xa, xb, xc) violate one of constraints :

xa + xb + xc ≤ 2

∀(xa and xb) violate one of constraints

xa + xb ≤ 1

(4.7)

To solve this problem, we use a public available package lp solve7, which implements

the branch-and-bound algorithm.

4.2 Experiments

In this section we present the results of applying this joint inference method

to improve cross-document information extraction. We use the data set from the

DARPA GALE distillation task for our experiment, which contains 381,588 newswire

documents. The baseline IE system extracted 18,386 person entities, 21,621 geo-

political entities and 18,792 organization entities. Table 4.2 shows the total number

of extracted relations and events in different types. We asked two human annotators

to evaluate the quality of Family and Member of relations.

4.2.1 Overall Performance

Figure 4.2a and 4.2b demonstrate the browsing costs. Figure 4.3a and 4.3b

depict the correctness of the removal operations (i.e., how many unique facts are

removed correctly vs. incorrectly), varying the parameter θ of the objective function.

We can see that compared to the baseline, our approach resulted in a 7.83%-29%

user browsing effort reduction for Family relations and a 0.7%-32.3% user browsing

effort reduction for Member of relations. Although our method mistakenly removed

a few correct facts, it successfully removed many more incorrect instances using any

7http://groups.yahoo.com/group/lp solve (Date Last Accessed, March, 10, 2015)
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Table 4.2: Numbers of unique relation and event predicates.

Relation/Event ACE Definition Number

Member Of
ORG-Aff.Employment,
ORG-Aff.Membership

2,854

Family Personal-Social.Family 1,128

Business Personal-Social.Business 326

Entity Located Gen-Aff.Org-Location-Origin 7,504

Person Located Physical.Located 4,788

Residence Gen-Aff.CRRE 2,560

Contact Contact.Meet, Contact.Phone-Write 445

Transaction Transaction.Transfer-Ownership,
Transaction.Transfer-Money

345

Conflicts or Justice Conflict, Justice, Life.Injure 976

Transport Movement.Transport 338
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Figure 4.2: Browsing cost comparison of Member Of and Family relations.

parameter. The overall rewards significantly outweigh the risks.

4.2.2 Impact of Different Types of Constraints

In order to evaluate the impact of each constraint, we also conducted exper-

iments using each constraint independently in the ILP model with θ = 10. The

results are presented in Table 4.3.

The Triangle-Entity Compatible constraint aggressively removed many cor-

rect instances but also some incorrect ones. For example, the baseline IE system

mistakenly predicted that “Saddam Hussein” as a member of “Hezbollah Party”

and “Amnesty International”. This error can be removed based on the following
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Figure 4.3: Removal curves w.r.t parameter θ. The x-axis is parameter
θ’s value, y-axis is the number of relation instances removed.

Table 4.3: Impact of different constraints on Member of and Family.

(a) Member of Relation.

Constraint type # removed correctly # removed incorrectly

Pairwise 13 5

Triangle-Entity Compatible 83 56

Triangle-Entity Incompatible 22 11

Triangle-Link Incompatible 8 4

(b) Family Relation.

Constraint type # removed correctly # removed incorrectly

Pairwise 26 2

Triangle-Entity Compatible 46 1

high-confidence facts: “Saddam Hussein” lived in “Tikrit” of “Iraq”, but “Hezbol-

lah Party/Amnesty International” were located in different regions “Lebanon/UK ”.

We can see that the pairwise constraint is very powerful, especially for the Fam-

ily relation. For example, it removed the Family relation between “Jack Straw”

and “Tony Blair” because they were involved in the Family relation (“Jack Straw”

was in “Tony Blair”’s Cabinet). It occasionally removed a few correct relations

involving two person entities with multiple types of relations. For example, “Mo-

hammed Bakir Al-hakim” and “Abdul Aziz Al-hakim” are family members as well

as colleagues in the Iraqi government.
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Analysis

The underlying sentence-level IE system is far from perfect, and many spurious

outputs maybe produced from various contexts. For instance:

Doc 1 The list included Sheik Ahmed Yassin, Hamas’ founder and spiritual leader, se-

nior Hamas official Abdel Aziz Rantisi

Doc 2 Since the June 4 summit in Jordan between Abbas, Sharon and George W. Bush,

Hamas has been a thorn in the side of Abbas ...

In the first document, the underlying system successfully extracted the Member of

relation between “Ahmed Yassin” and “Hamas”, but in the second document,

“George W. Bush” is mistakenly labeled as member of “Hamas” with fairly high

confidence, because of a pattern for Employment relation: “PER, ORG”. with the help

of relational dependencies among relations and events in cross-document level, such

mistakes can be effectively recovered.

Due to the errors in the local name tagger and relation extractor, there may

exist relation extraction output with incorrect argument types. For example, a

baseline system may consider “Lebanon” as a person entity, thus incorrectly pre-

dict “Lebanon” as member of “Hezbollah” in a certain context. This kind of errors

can be filtered out using this constraint, since the relation between “Hezbollah”

and “Lebanon” should be detected correctly in most cases. In additional to the

experimental results in the previous section, we are also curious about whether the

proposed inference method can improve the results of the joint extraction frame-

work in Chapter 3. We found that by using the constraints that we discovered in

this method we can only remove very few false positive predictions from the joint

model. For example, the model mistakenly considered that “Israel” is located in

“Gaza”. Given that those two entities are frequently involved in transport events,

the inference method can remove this predicate. The impact of the inference method

on this result is insignificant since (i) our joint model does not produce any entity

co-reference information, as a result, many predicates involve only nominal men-

tions and pronouns; and (ii) the test data is small, therefore there is not enough

redundancy information.
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4.3 Discussion

In this chapter we used an ILP-based inference framework to exploit cross-

document dependencies over multiple facts extracted from a large set of documents.

In practical application of information extraction, the documents of interests can be

from different news agencies, different time frames and different genres. The knowl-

edge that conveyed by those documents are redundant. Because of the difference

among the contextual information, the extraction results from different places are

often inconsistent. To improve the quality of extraction, we mined a set of pairwise

and triangle constraints, and devised an ILP formulation to optimize the overall

confidence subject to those constraints. Such joint inference analysis allowed us to

significantly enhance the extraction performance.



CHAPTER 5

Joint Bilingual Name Tagging

In this chapter, we present the idea of utilizing cross-lingual dependencies to im-

prove IE for parallel corpora. We propose to jointly and consistently extract names

from parallel corpora by allowing interactions between the bilingual sentence pairs.

Experiments on Chinese-English parallel corpora demonstrated that the proposed

methods significantly outperformed monolingual baselines, and were robust to au-

tomatic word alignment. External evaluation on name-aware machine translation

showed that the proposed name tagger can be applied to improve word alignment

and name-aware machine translation.

5.1 Baseline Approach

Traditionally, name tagging is modeled as a sequential labeling problem, which

takes input as a sequence of words/tokens, and predicts a chain of corresponding

labels. In this study, we aim to address the problem of joint bilingual name tagging

to extract names in parallel corpus coherently and accurately. In our case study, the

input of a bilingual name tagger is aligned (manually or automatically) parallel sen-

tence pairs in Chinese and English. We first apply the Stanford word segmenter [109]

with Peking University standard to segment Chinese sentences. For example, for the

parallel sentence pair demonstrated in Figure 5.1, our goal here is to extract name

pairs that appear in the bilingual sentence pair, such as the organization name pair

of (亚行, Asian Development Bank).

A natural and straightforward approach is to consider each side of a sentence

pair in isolation, and solve the sequence labeling problem on each side. In post-

processing, we can remove all of those name pairs that are mis-aligned in boundaries

Portions of this chapter previously appeared as: Q. Li, H. Li, H. Ji, W. Wang, J. Zheng, and
F. Huang, “Joint Bilingual Name Tagging for Parallel Corpora,” in Proc. Int. Conf. on Inform.
and Knowledge Manage., Maui, HI, 2012, pp. 1727–1731.
Portions of this chapter previously appeared as: H. Li, J. Zheng, H. Ji, Q. Li, and W. Wang, “Name-
aware machine translation,” in Proc. Annu. Meeting of the Assoc. for Computational Linguistics,
Sofia, Bulgaria, 2013, pp. 604–614.
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B-ORG O O

亚行 首先 提出 ...

the Asian Development Bank first proposed ...

O B-ORG I-ORG I-ORG O O

Figure 5.1: Example of parallel sentence pair. Solid lines represent align-
ments between names, while dashed lines denote other align-
ments

or labeled with different types. We adopt the linear-chain CRF [94] as our learning

method. Given an input sequence x, the conditional distribution of the output label

sequence y is defined as:

P (y|x) =
1

Z(x)
· exp

L∑

j=1

K∑

k=1

θk · fk(yj , yj−1,x, j) (5.1)

where fk is a feature function, θk is its weight, and Z(x) is a normalization factor.

To cast name tagging as a sequential labeling problem, the BIO tagging scheme [31]

is applied as our label alphabet. Each token in the input sequence is labeled with

one of BIO tags in conjunction with its entity type. BIO means a token is Beginning

of, Inside, and Out of a named entity, respectively. There are several out-of-shelf

toolkits for linear-chain CRF, and we use Mallet [95] in our experiments. Table 5.1

summarizes the features for the baseline, where we assume the i-th token is the

token in the current step.

5.2 Joint Bilingual Name Tagger

5.2.1 Linear-chain CRF with Cross-lingual Features

The baseline approach that we described above neglects the dependencies be-

tween sentence pairs. Following the intuition that the contexts of sentences pairs

can help disambiguate and reduce errors mutually, we present a new approach that

still takes linear-chain CRF as the learning framework, but exploits cross-lingual

contexts based on alignments.

Let xc = (xc,1...xc,L) and xe = (xe,1...xe,M) be the input Chinese-English sen-

tence pair; yc = (yc,1...yc,L) and ye = (ye,1...ye,M) be the corresponding output label

sequences. The subscripts c and e denote Chinese and English respectively. In
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Table 5.1: Monolingual features in baseline systems. The examples cor-
respond to Figure 5.1. The token “Asian” of the English sen-
tence is used as current token. The subscripts represent the
offsets from the current token.

Language Feature Description

Common
Language-
independent

n-gram Unigram, bigram and trigram token sequences in the
context window of the current token. For example,
w−2w−1=“, the”; w3=“first”.

Part-of-Speech Part-of-Speech tags in the contexts are used. For ex-
ample, POS1=N .

Dictionary Various types of gazetteers, such as person names, or-
ganizations, countries and cities, titles and idioms are
used. For example, a feature “B-Country” means the
current token is the first token of an entry of our coun-
try name list.

Conjunction Conjunctions of various features. For example,
POS1POS2=N&N

English-
specific

Brown
Word Cluster

To reduce sparsity, we use the Brown clusters learned
from ACE English corpus as features [99]. We use the
clusters with prefixes of length 4, 6, 10 and 20.

Case and
Shape

English capitalization and morphology analysis based
features. For example, “InitCap” indicates whether
the token’s first character is capitalized.

Chunking Chunking tags are used as features. For example,
Chunk1 = I NP.

Other Sentence level and document level features. For ex-
ample, TFIRST means the token is in the first sentence
of a document.

Chinese-
specific

Rule-based
feature

Some heuristic rules are designed to detect person
names using first name and last name character lists.
For example, for a sequence of words, if all characters
appear in the first name character list, and the length
of each word is less than 2, then the sequence is likely
to be a person’s first name.

Chinese each xc,i is a word, while in English each xe,j represents a token. We use

A = {(i, j)} to denote the set of Chinese-English alignments, an alignment (i, j)

indicates a Chinese word xc,i is aligned to an English token xe,j. For simplicity we

take Chinese side as an example, the hidden variables yc is not only conditioned on

xc but also conditioned on xe and its alignment A. The conditional probability of
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yc can be extended as:

P (yc|xc,xe,A) = 1
Z ·

exp
T∑

i=1

K∑

k=1

(θk · fk(yc,i, yc,i−1,xc,xe, i,A[i]))
(5.2)

where A[i] represents the indices of English tokens which are aligned to the i-th

Chinese word. This still follows the linear-chain structure in which we need to build

one model for each language. The distinction from the baseline approach is that,

with an English sequence xe and its alignment A, we can propagate the context from

English to Chinese according to its alignment, and vice versa. Therefore not only

is the output from two languages more accurate, but also the entity pair detection

performance is improved consequently. Ideally, we can generate arbitrary variants

from the feature function fk(yc,i, yc,i−1,xc,xe, i,A[i]). In practice, we use the same

feature set as in Section 5.1, but aggregate features of xe,j and its corresponding

English tokens as observed features.

5.2.2 Bilingual Conditional Random Fields

Although the approach in section 5.2.1 already takes into account the depen-

dencies between sentence pair, it requires separate models for two languages, and

the prediction from one side cannot directly influence the assignment of the other.

In this section, we devise a bilingual CRF framework to jointly model the bilingual

sentence pair based on their alignments. We define the conditional probability of

output yc and ye jointly as:

p(y|x) = 1
Z(x)

L∏

i=1

Ψc(yc,i, yc,i−1,xc, i)

M∏

j=1

Ψe(ye,j , ye,j−1,xe, j)
∏

(i,j)∈A
Ψa(yc,i, ye,j ,xc,xe, i, j)

(5.3)

This distribution is factorized by three cliques of factors: {Ψc} are potentials

of Chinese linear-chain factors, {Ψe} are potentials of English linear-chain factors,

and {Ψa} are potentials of bilingual factors. The factors in each clique share the

same feature set and weights. Z(x) is the normalization factor which sums over

potentials of all possible assignments of yc and ye.
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Monolingual Linear-chain Factors

Similar to monolingual name tagging, for any sentence in each language we

define factors over all pairs of consecutive variables (yt−1, yt), which enable the model

to capture the dependency between consecutive variables. The potential function of

monolingual factors Ψc and Ψe is defined as

Ψ(yt, yt−1,x, t) = exp(
∑

k

λkfk(yt, yt−1,x, t)) (5.4)

where fk is a binary feature function and λk is the corresponding real-valued weight.

Bilingual Alignment Factors

The label of a Chinese word is often highly correlated with its aligned English

token, and vice versa. For instance, in the example in Figure 5.1, the Chinese word

“亚行” and its English counterpart “Asian Development Bank” should be both

labeled as organizations. In order to model the correlation between the labels of

aligned word-tokens, we introduce factors that link output variables in two languages

based on alignments. For alignment (i, j) in which Chinese word xc,i is aligned

to English token xe,j, we define a bilingual factor over yc,i and ye,j. This factor

template bridges two monolingual linear chains, and makes it possible to propagate

information across the sentences pairs. The potential function of bilingual factors

Ψa is defined as:

Ψa(yc,i, ye,j ,xc,xe, i, j) = exp(
∑

k

λkfk(yc,i, ye,j ,xc,xe, i, j)) (5.5)

This allows us to design arbitrary binary features based on both xc and xe. A simple

feature function for the above example is:

f101(yc,i, ye,j ,xc,xe, i, j) =



1 if yc,i = B-ORG, ye,j = I-ORG and xe,j = Bank

0 otherwise

This feature is true when the English token “Bank” is tagged as I-ORG, and its

aligned Chinese word is tagged as B-ORG. If this feature attains high weight, the

aligned word-token pair is likely to represent an organization entity given that the

English token is “Bank”.
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xCH xc,i xc,i+1 xc,i+2

yCH yc,i−1 yc,i yc,i+1 yc,i+2

yEN ye,j−1 ye,j ye,j+1 ye,j+2 ye,j+3 ye,j+4 ye,j+5

xEN xe,j xe,j+1 xe,j+2 xe,j+3 xe,j+4 xe,j+5

Bilingual Factors

亚行 首先 提出

the Asian Development Bank first proposed

Figure 5.2: Graphical representation of bilingual CRF model. Squares
represent factors over input and output variables, for sim-
plicity, the links between bilingual factors and input variables
are not shown.

Figure 5.2 illustrates the factor graph representation of the model for the

example sentence pair in Figure 5.1. In this figure, white circles represent hidden

variables yc and ye, gray circles represent observed sentence pair. Theoretically the

factors can be linked to the whole observed sequences, for simplicity we only show

the link to those at the same step.

Inference and Training

Since cycles are introduced by bilingual factors, typical inference algorithms for

marginal probability and MAP such as Forward-backward and Viterbi algorithms

cannot be exploited, and the exact inference is intractable in general. In this study

we employ named Tree-Based Reparameterization (TRP) [110, 111], an efficient

loopy belief propagation method, to perform approximate inference on the loopy

graph. Given a set of training data {(x(i),y(i))}Ni=1, the feature weights Λ = {λk}
are estimated using maximum likelihood estimation (MLE). The log-likelihood of

the training set is calculated as:

LΛ =

N∑

i=1

log p(y(i)|x(i); Λ) (5.6)
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To avoid over-fitting we introduce Gaussian prior |Λ|
2

2σ2 as regularization term to LΛ.

Then the partial derivative of the log-likelihood with respect to parameter λk is:

∂L
∂λk

=
N∑

i=1

Fk(x
(i),y(i))

−
N∑

i=1

∑

y′
p(y′|x(i); Λ)Fk(x

(i),y′)− λk
σ2

(5.7)

where Fk(x
(i),y(i)) denotes the count of feature fk over the i-th instance. The first

term is the empirical count of λk, and the second term is the expected count of

λk under the model distribution. Given the gradient, optimization algorithms such

as L-BFGS can be applied to maximize the log-likelihood. In this study we use

Mallet [95] toolkit to implement the inference and learning process.

Features

Given such a framework, the remaining challenge is to design features for both

monolingual and bilingual factors. There are many possible ways to define cross-

lingual features in this joint model. For instance, one possibility is to define them

based on some conjunctions of the observed values from two languages, but such

features require very large of training data and thus suffer from data sparsity. In our

framework, each feature is defined as a conjunction of assignment and features from

the input sequence; therefore we only need to design features of the input sequence.

We use the features presented in Section 5.1 for monolingual factors. The features

for the proposed bilingual factors are based on the combination of the monolingual

features from the corresponding words/tokens. For instance, given a bilingual factor

over xc,i and xe,j and alignment (i, j), the sets of monolingual features from xc,i and

xe,j are merged as features to form the factor. In this way, both monolingual features

and cross-lingual transferred features are incorporated in a uniformed manner.

5.3 Experiments

5.3.1 Evaluation Setup

We asked four bilingual speakers to manually annotate the Parallel Treebank,

which contains 288 Chinese-English parallel documents aligned at token level man-
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Table 5.2: The number of names in the bilingual data set.

Type English Chinese Bilingual Pairs
GPE 4,049 4,077 4,031
PER 1,053 1,048 1,044
ORG 1,547 1,549 1,541
All 6,649 6,674 6,616

ually. The manual annotations were reviewed and improved with several additional

passes to form the final ground-truth. 230 documents are randomly selected for

training, and the remaining 58 documents are used for blind test. Some statistics

about this bilingual data set are given in Table 5.2. The last column (Bilingual

Pairs) of the table shows the number of name pairs detected with manual align-

ment. Since the translation is not exactly literal, some names in one language may

have no correspondences in the other. As a result, the number of name pairs may

be slightly smaller than the number of names in each language.

A name pair in system output is considered correct if and only if both names in

both languages are correct and have the same entity type. The scores are computed

using bilingual sentence pairs and name pairs, which are detected according to token-

based alignment.

5.3.2 Overall Performance

Table 5.3 shows the proposed approaches (with both manual alignment and

automatic alignment [112]8 ) substantially outperformed the baseline on all name

types, at 99.9% confidence level according to Wilcoxon Matched-Pairs Signed-Ranks

Test. The joint model achieved the top F-score with automatic alignment for orga-

nization names. This result indicates that our joint methods are robust to alignment

noise and thus they can be practically applied to bilingual parallel data with auto-

matic alignment, and alleviate the necessity of costly manual alignment.
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Table 5.3: Performance (%) on bilingual data set. The bold F-scores are
significantly better than the baseline; while the scores marked
with * are the best for each type.

XXXXXXXXXXXMethod
Type Bilingual Name Pair Tagging

GPE PER ORG ALL

Baseline
P 89.2 91.3 68.9 85.9
R 86.7 81.8 51.1 78.2
F 87.9 86.3 58.7 81.9

Linear-Chain CRF with
Cross-lingual Features
(Manual Alignment)

P 91.2 92.4 69.8 87.2
R 91.4 89.1 61.5 84.5
F 90.7 91.2 65.4 85.8

Joint CRF
(Manual Alignment)

P 90.8 94.0 68.6 86.9
R 92.8 90.1 61.5 85.6
F 91.8* 92.0* 64.9 86.3*

Linear-Chain CRF with
Cross-lingual Features
(Automatic Alignment)

P 90.6 97.0 70.7 87.8
R 88.8 83.9 57.6 81.3
F 89.7 90.0 63.5 84.4

Joint CRF
(Automatic Alignment)

P 89.9 92.6 71.2 86.6
R 88.7 84.9 61.9 82.3
F 89.3 88.6 66.2* 84.4

Human Annotator F 95.5 89.9 93.8 94.1
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Figure 5.3: Performance on different sizes of training data.

5.3.3 Learning Curves

Figure 5.3 shows the overall performance of our models when they are learned

from different size of training data. In order to balance the small size of training

8We applied GIZA++ 2.0 toolkit to produce automatic word alignment; default parameter
setting for training, 5 iterations of IBM model 1, 3, 4 and HMM alignment model were performed
respectively; the alignment f-measure was 56.7%
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data and test data, we randomly selected half of the test set (29 documents) for test.

We can see that with only 20% of the training data, each of the joint methods (with

manual alignment or automatic alignment) can already achieve better performance

compared to the baseline learned from 100% training data. In particular, when using

20% training data, the joint CRF model obtained 12.1% higher F-score with manual

alignment and 10.1% higher F-score with automatic alignment over the baseline. As

the training size increases, they consistently outperformed the baseline.

5.4 Extrinsic Evaluation

on Name-aware Machine Translation

One ambitious goal of developing the bilingual name tagging system is to im-

prove machine translation performance with respect to named entities. Traditional

MT approaches focused on the fluency and accuracy of the overall translation but

lack their ability to translate certain content words including critical information,

especially names. A typical statistical MT system can only translate 60% person

names correctly [113]. Incorrect segmentation and translation of names, which often

carry central meanings of a sentence, can also yield incorrect translation of long con-

texts. We developed a novel Name-aware MT (NAMT) approach which can tightly

integrate our bilingual name tagging into the training and decoding processes of an

end-to-end MT pipeline.

As our baseline, we apply a high-performance Chinese-English MT system [114,

115] based on hierarchical phrase-based translation framework [116]. It is based on

a weighted synchronous context-free grammar (SCFG). In our NAMT approach,

we apply our bilingual name tagger to extract three types of names: PER, ORG and

GPE from both the source side and the target side in a parallel corpus with word

alignment from running GIZA++ [117] . We ignore two kinds of names: multi-word

names with conflicting boundaries in two languages and names only identified in

one side of a parallel sentence.

We built a NAMT system from such name-tagged parallel corpora. First, we

replace name pairs with their entity types, and then use GIZA++ to re-generate

word alignment. Since the name tags appear very frequently, the existence of such
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tags yields improvement in word alignment quality. The re-aligned parallel corpora

are used to train our NAMT system based on SCFG. We extract SCFG rules by

treating the tagged names as non-terminals. However, the original parallel corpora

contain many high-frequency names, which can already be handled well by the

baseline MT. Replacing them with non-terminals can lead to information loss and

weaken the translation model. To address this issue, we merged the name-replaced

parallel data with the original parallel data and extract grammars from the combined

corpus. For example, given the following sentence pair:

• 中国 反对 外来 势力 介入 安哥拉 冲突 .

• China appeals to world for non involvement in Angola conflict .

after name tagging it becomes

• GPE 反对 外来 势力 介入 GPE 冲突 .

• GPE appeals to world for non involvement in GPE conflict .

Both sentence pairs are kept in the combined data to build the translation model.

During the decoding, we extract names in the source language with the baseline

monolingual name tagger. Then we apply a state-of-the-art name translation sys-

tem [113] to translate names into the target language. The non-terminals in SCFG

rules are rewritten to the extracted names during decoding, therefore allow un-

seen names in the test data to be translated. Finally, our decoder exploits the

dynamically created phrase table from name translation, competing with originally

extracted rules, to find the best translation for the input sentence.

5.4.1 Evaluation Setup

We used a large Chinese-English MT training corpus from various sources and

genres (including newswire, web text, broadcast news and broadcast conversations)

for our experiments. We also used some translation lexicon data and Wikipedia

translations. The training corpus includes 1,686,458 sentence pairs. The joint name

tagger extracted 1,890,335 name pairs (295,087 PER, 1,269,056 GPE and 326,192 ORG).
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5.4.2 Overall Performance

We evaluate the overall performance using the following three evaluation met-

rics (see [21] for details):

1. Name-aware BLEU metric: BLEUNA = BP ·NP · exp

(∑N
n=1wn logwpn

)
. This

metric is augmented from original BLEU metric [118]. Each word count in the

brevity penalty BP is weighted based on whether it is contained in a name. NP

is to penalize the output sentences that contain too many or too few names.

wpn is weighted precision.

2. Translation Edit Rate (TER) [119]. TER = # of edits
average # of reference words

.

3. Named Entity Weak Accuracy (NEWA) [17] to evaluate the name translation

performance. NEWA = Count # of correctly translated names
Count # of names in references

.

Besides the original baseline, we developed another baseline system by adding

name translation table into the phrase table (NPhrase). Table 5.4 presents the per-

formance of overall translation and name translation. We can see that except for the

BOLT3 data set with BLEU metric, our NAMT approach consistently outperformed

the baseline system for all data sets with all metrics, and provided up to 23.6% rel-

ative error reduction on name translation. According to Wilcoxon Matched-Pairs

Signed-Ranks Test, the improvement is not significant with BLEU metric, but is

significant at 98% confidence level with all of the other metrics. The gains are more

significant for formal genres than informal genres mainly because most of the train-

ing data for name tagging and name translation were from newswire. Furthermore,

using external name translation table only did not improve translation quality in

most test sets except for BOLT2. Therefore, it is important to use name-replaced

corpora for rule extraction to fully take advantage of improved word alignment.

5.4.3 Improving Word Alignment

It is also interesting to examine the advantage of our bilingual name tagging on

improving word alignment. We conducted the experiment on the Chinese-English

Parallel Treebank [120] with ground-truth word alignment. The detailed procedure

is as follows:
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Table 5.4: Translation performance (%).
Metric System BOLT 1 BOLT 2 BOLT 3 BOLT 4 BOLT 5 NIST2006 NIST2008

BLEU
Baseline 14.2 14.0 17.3 15.6 15.3 35.5 29.3
NPhrase 14.1 14.4 17.1 15.4 15.3 35.4 29.3
NAMT 14.2 14.6 16.9 15.7 15.5 36.3 30.0

Name-aware BLEU
Baseline 18.2 17.9 18.6 17.6 18.3 36.1 31.7
NPhrase 18.1 18.8 18.5 18.1 18.0 35.8 31.8
NAMT 18.4 19.5 19.7 18.2 18.9 39.4 33.1

TER
Baseline 70.6 71.0 69.4 70.3 67.1 58.7 61.0
NPhrase 70.6 70.4 69.4 70.4 67.1 58.7 60.9
NAMT 70.3 70.2 69.2 70.1 66.6 57.7 60.5

NEWA

All
Baseline 69.7 70.1 73.9 72.3 60.6 66.5 60.4
NPhrase 69.8 71.1 73.8 72.5 60.6 68.3 61.9
NAMT 71.4 72.0 77.7 75.1 62.7 72.9 63.2

GPE
Baseline 72.8 78.4 80.0 78.7 81.3 79.2 76.0
NPhrase 73.6 79.3 79.2 78.9 82.3 82.6 79.5
NAMT 74.2 80.2 82.8 80.4 79.3 85.5 79.3

PER
Baseline 53.3 44.7 45.1 49.4 48.9 54.2 51.2
NPhrase 52.2 45.4 48.9 48.5 47.6 55.1 50.9
NAMT 55.6 45.4 58.8 55.2 56.2 60.0 52.3

ORG
Baseline 56.0 49.0 52.9 38.1 41.7 44.0 41.3
NPhrase 50.5 50.3 54.4 40.7 41.3 42.2 40.7
NAMT 60.4 52.3 55.4 41.6 45.0 51.0 44.8
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Figure 5.4: Word alignment gains according to the percentage of name
words in each sentence.

1. run the joint bilingual name tagger,

2. replace each name string with its name type (PER, ORG or GPE), and ran

GIZA++ on the replaced sentences,

3. run GIZA++ on the words within each name pair,

4. and merge the results from (2) and (3) as the final word alignments.
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Table 5.5: Impact of joint bilingual name tagging on word alignment.

Words Method P (%) R (%) F (%)

All Words
Baseline GIZA++ 69.8 47.8 56.7
Joint Name Tagging 70.4 48.1 57.1
Ground-truth Name Tagging 71.3 48.9 58.0

Words Within Names
Baseline GIZA++ 86.0 31.4 46.0
Joint Name Tagging 77.6 37.2 50.3

We also measured the performance of applying ground-truth named entities as the

upper-bound. The experiment results are shown in Table 5.5. For the words within

names, our approach provided significant gains by enhancing F-measure from 46.0%

to 50.3%. Only 10.6% words are within names, therefore the upper-bound gains

on overall word alignment is only 1.3%. Our joint name tagging approach achieved

0.4% (statistically significant) improvement over the baseline. In Figure 5.4 we

categorized the sentences according to the percentage of name words in each sentence

and measured the improvement for each category. We can clearly see that as the

sentences include more names, the gains achieved by our approach tend to be greater.

5.4.4 Analysis

Although the proposed model has significantly enhanced translation quality,

some challenges remain. Here we highlights some major problems.

Name Structure Parsing We found that the gains of our NAMT approach were

mainly achieved for names with one or two components. When the name structure

becomes too complicated to parse, name tagging and name translation are likely to

produce errors, especially for long nested organizations. For example, “古田县 检

察院 反渎局” (Anti-malfeasance Bureau of Gutian County Procuratorate) consists

of a nested organization name with a GPE as modifier: “古田县 检察院” (Gutian

County Procuratorate) and an ORG name: “反渎局” (Anti-malfeasance Bureau).

Name Abbreviation Tagging and Translation Some organization abbreviations

are also difficult to extract because our name taggers have not incorporated any

coreference resolution techniques. For example, without knowing that “FAW ” refers

to “First Automotive Works” in “FAW has also utilized the capital market to directly

finance, and now owns three domestic listed companies”, our system mistakenly
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labeled it as a GPE. The same challenge exists in name alignment and translation

(for example, “民革 (Min Ge)” refers to “中国国民党革命委员会” (Revolutionary

Committee of the Chinese Kuomintang).

English Organization Tagging Sometimes the joint model cannot improve En-

glish Organization extraction. Some government organizations were only partially

translated. For example, “柬埔寨王国政府 (the Kingdom of Cambodia govern-

ment)” was translated and aligned to “the Kingdom of Cambodia”, where “govern-

ment” was missed in English. In order to produce consistent name boundaries, the

joint model mistakenly labeled “the Kingdom of Cambodia” as an English organiza-

tion name. English monolingual features normally generate higher confidence than

Chinese features for ORG names. On the other hand, some good propagated Chinese

features were not able to correct English results. For example, in the following sen-

tence pair: “根据中国，老挝和联合国难民署三方达成的... (in accordance with the

tripartite agreement reached by China, Laos and the UNHCR on)...”, even though

the tagger can successfully label “联合国难民署/UNHCR” as an organization be-

cause it is a common Chinese name, English features based on previous GPE contexts

still incorrectly predicted “UNHCR” as a GPE name.

5.5 Discussion

In this chapter, we studies the cross-lingual dependencies in parallel corpora.

We proposed a bilingual joint graphical model to improve name tagging performance

on parallel corpora. Taking an English-Chinese parallel corpus as a case study, we

demonstrated that this method significantly improves the traditional monolingual

baseline. And the bilingual factors based on word alignments can encourage consis-

tency between the sentence pairs. In addition, our external evaluation showed that

the new method can be applied to improve name-aware machine translation and

statistical word alignment.



CHAPTER 6

Conclusions and Future Directions

In this thesis we made use of cross-component, cross-document, and cross-lingual

dependencies to improve IE performance. As the main part of this thesis, we pre-

sented a novel joint framework based on structured prediction and inexact search

to extract entity mentions, relations and events from each sentence. Our main ar-

gument is that these fundamental IE subtasks should not be simply modeled by a

pipeline of local classifiers as in most previous approaches. Instead, it is important

to make use of interactions among different subtasks, and take into account non-

local features that can capture various long-distance dependencies. Different from

traditional pipelined approaches, for the first time, we formulated the task of IE as

constructing information networks from input sentences, where our goal is to search

for the best information network from each input sentence. Based on this powerful

framework, we can extract multiple IE components such as entity mentions, relations

and events all together in a single model. In addition, we have explored a number of

useful global features to encourage global coherency. Our final system can replace

a pipeline of multiple classifiers by a single and unified model to extract the three

types of component simultaneously while achieving state-of-the-art performance in

each subtask. Beyond the sentence-level extraction, we further presented a cross-

document inference method based on ILP formulation, where the inter-dependencies

among facts that extracted from different places are leveraged as hard constraints.

This method allows us to incorporate information from a much wider context to

further improve the extraction quality from a sentence-level extractor. Finally, we

presented a bilingual name tagging framework to make use of bilingual dependencies

in parallel corpora. Experiments on English-Chinese parallel corpus demonstrated

that the joint bilingual model can produce more accurate and coherent extraction

results comparing with the isolated monolingual baselines.

91
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There are two main directions for future work:

A. Expanding Information Types We are interested in expanding the

scope of extraction to explore more information types. So far, the sub-tasks that we

have discussed in this thesis only cover a limited number of types. For example, the

entity mention extraction only uses 7 main entity types in the ACE definition such

as Person, Organization, Geo-political Entity and so on. The event extraction

uses 33 event subtypes. Although the total number is much more than the entity

types, it neglects a lot of useful and common event types in daily life. For example,

consider the following news title about Ebola in New York:

“A Ebola patient in New York is cured and released from hospital.”

If we only use the types that were studied in this thesis, we can only find minimal

information about the news conveyed by this title. To be specific, we cannot rec-

ognize “Ebola” as a disease, “patient” as a person entity who is under treatment

for a medical problem. Moreover, the main events “Cure (cured)” and “Discharge

(released)” are out of our domain of event mentions, but they play a critical role in

this sentence. In another example:

“the Seattle Seahawks won the Super Bowl in a nearly flawless performance.”

only recognizing “Seattle Seahawks” as an Organization mention is not helpful to

understand this sentence. It is important to extract the main event “Win (won)”

and its arguments “Sports Game (Super Bowl)”, and “Sports Team (Seattle Sea-

hawks)”. In addition, the fine-grained types can be utilized to further constrain

the search space of extraction. For instance, we can say that sports team is the

only type of organization that can participate in “Win” events. This future work

requires an extensive expansion of task definition with linguistic and practical mo-

tivations, as well as a large corpus with desired annotations. Techniques such as

distant supervision [121], automatic taxonomy induction [122] and semi-supervised

learning [123] may be applied to help reduce the cost.

B. Knowledge Acquisition for Information Extraction Our error analy-

sis on the experiment results of the joint models calls for feeding common knowledge

to the course of extraction. Most features that we developed in this thesis are based

on lexical, syntactic, and shallow semantic resources. Various types of world knowl-
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edge have been shown useful to IE tasks [9,124,125]. Most prior work, however, only

discovered some narrow aspects of world knowledge to some specific tasks. We be-

lieve that systematic and comprehensive acquisition of world knowledge is extremely

difficult but essential to improve the performance of IE to a completely new level.

Here we describe a couple of examples based on our analysis.

• In the real world, each type of entity has a finite set of common attributes.

Knowing this information, we can constrain our extraction model to a certain

sub search space. For instance, in the sentence “any use of chemical weapons

would be counterproductive to Saddam”, the word “use” should be identified as

a trigger for Attack event because “chemical weapons” is to used for attacking

someone. On the contrary, in the sentence “the hardware is used by the

industry today.”, “use” is not an Attack trigger.

• Usually there are many different ways to express the same event. On the

other hand, many quite different events can be classified to the same type.

How to differentiate the subtle difference of the same word in different scenes

is a challenging. Consider the following sentences:

– “an al-Qaeda member was captured.”

– “the Italian ship was captured by Palestinian terrorists. ”

While the most frequent Arrest-Jail event trigger is “arrest”, the word “cap-

ture” in the first sentence has very similar meaning since it has a sense of

“to take control of or seize by force”. In the second sentence, it should be

a Transfer-Ownership trigger, since its object is an artifact rather than a

person, and thus the sense of “capture” has been subtly changed.

As the final remark, although the task of IE has gained significant improve-

ment over the last decade, the IE techniques are yet far from perfect. This thesis,

by standing upon the shoulders of previous research such as constrained conditional

models and structured prediction, studied the topic of joint information extraction

for entity mentions extraction, relation extraction and event extraction, and pro-

vided a novel view for the whole task. We hope the results of this thesis can inspire

further research in the field of IE and related areas.
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