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How humans learn about knowledge?
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What is the knowledge that humans aim to learn?
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(slow-thinking)

Surface 
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Worked with Zhenhailong Wang



Machines learn knowledge through multi-sensory interactions
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Machines learn knowledge through multi-sensory interactions
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🌎

Video: A “Visual Recording” of World State Changes

“Book falling like a rock”

proxy

Video-Language Foundation Models
InternVideo (2023)

Video-Language Datasets

Where can we learn such physical world knowledge without interactive data 💲💲💲? 

Figure Credits: Zhenhailong Wang

https://arxiv.org/abs/2212.03191


Existing V+L Models

Current models rely on object-centric abilities as a shortcut for V+L understanding.

“Probing Image–Language Transformers for Verb Understanding” Lisa Hendricks, et al. (arXiv 2021)

Low Verb Performance

Model Verb Accuracy

MMT 60.8

Merged–MMT 60.7

Lang–MMT 64.5

Image–MMT 59.7

Figure Credits: Zhenhailong Wang



Existing V+L Models

Current models rely on object-centric abilities as a shortcut for V+L understanding.

“When and why vision-language models behave like bags-of-words, and what to do 
about it” Mert Yuksekgonul, et al. (ICLR 2023)

Bags of Words

BLIP

Figure Credits: Zhenhailong Wang



Existing V+L Models

Current models rely on object-centric abilities as a shortcut for V+L understanding.

“Revealing Single Frame Bias for Video-and-Language Learning” Jie Lei, et al. (ACL23)

Single-Frame

Figure Credits: Zhenhailong Wang

https://arxiv.org/abs/2206.03428
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Knowledge can also help with V+L Pretraining

15

Compared to raw data, knowledge is important and useful information.



We learn three types of knowledge

16

Factual Knowledge

Factual Knowledge are information about instance-level facts extracted from raw data.

Text Vision
Entity Object

Relation Scene Graph

Event Activity/Situation

Affordance Embodied AI



Goal: Surface à Deep Semantic Knowledge
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Challenge 1: Complex Situation 

7
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Event / Action 
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We learn three types of knowledge

20

Factual Knowledge Common Knowledge

Procedural 
Knowledge

Common-
sense 

Knowledge
External 

KB

Common knowledge refers to knowledge of common patterns that is acquired or 

summarized from historical interaction with the world.
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Goal: Surface à Deep Semantic Knowledge
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Challenge 2: Long-Horizon Planning

Temporal 

Dynamics

7

Complex Situation Long-Horizon Planning

Event / Action 

Semantics

Surface

Deep

à



We learn three types of knowledge

23

Factual Knowledge Common Knowledge Model Knowledge

Procedural 
Knowledge

Common-
sense 

Knowledge
External 

KB

language 
model

Knowledge

V+L 
model

Knowledge

Model Knowledge (parametric knowledge) is the knowledge embedded and encoded in models. 

Text Vision
Entity Object

Relation Scene Graph

Event Activity/Situation

Affordance Embodied AI



Large Language Models (LLMs) are very powerful.

Can we borrow the ability from LLM?

https://twitter.com/xiye_nlp



One Solution: Language As Supervision 
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One Solution: Language As Supervision 

Temporal 

Dynamics
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We inject knowledge to V+L foundation models

40

Factual Knowledge Common Knowledge Model Knowledge

Procedural 
Knowledge

Common-
sense 

Knowledge
External 

KB

language 
model

Knowledge

V+L 
model

Knowledge

We patch three types of knowledge into V+L foundation models.

Text Vision
Entity Object
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Event Activity/Situation

Affordance Embodied AI



Outline: Factual Knowledge

42

Factual Knowledge

Implicit 
Knowledge

Factual Knowledge are information about instances extracted from raw data.

Text Vision
Entity Object

Relation Scene Graph

Event Activity/Situation

Affordance Embodied AI



Outline: Factual Knowledge

43
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Outline: Common Knowledge

44

Text Vision

Entity Object

Relation Scene Graph

Event Activity/Situation

Factual Knowledge Common Knowledge

Procedural 
Knowledge

Common-
sense 

Knowledge
External 

KB

Common knowledge refers to knowledge of common patterns that is acquired or 

summarized from historical interaction with the world.



Common Knowledge: History repeats itself

27



Common Knowledge: History repeats itself

27



Commonsense knowledge includes facts about events occurring in time, 
about the effects of actions. 

Commonsense Knowledge

Vision–Language–Knowledge Co-Embedding for Visual Commonsense Reasoning



• Two ways to learn procedural knowledge

Common
Knowledge

Explicit 
Knowledge 

Source

Implicit 
Knowledge 

Source

Use knowledge:
- As Data
- As Supervision
- In Model

Learning from massive data

48

How to add common knowledge?



Model Knowledge

49

Text Vision

Entity Object

Relation Scene Graph

Event Activity/Situation

Factual Knowledge Common Knowledge Model Knowledge

Procedural 
Knowledge

Common-
sense 

Knowledge
External 

KB

language 
model

Knowledge

V+L 
model

Knowledge

Model Knowledge is the knowledge embedded and encoded in models. 



Model Knowledge

50

Implicit
Knowledge
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Summary: How to learn multimedia embedding?

Knowledge 
for 

Model

Knowledge 
for

Data

Knowledge-
Driven V+L 
Pretraining

51



Moving towards…

• On the model side, adding knowledge can guide the model where to focus.

• Compositional Multi-Granularity Semantic Knowledge (such as verb, adjectives, etc) 

• Long Horizon Reasoning (such as temporal dynamics, etc)

• Parametric Knowledge Controlling (such as parameter editing, etc)

• On the data side, knowledge is useful in the following ways:

• In-context prompt

• Data augmentation

• Data selection

• Effective Feedback

52
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Timetable

57

Content Time Presenter

Motivation and Overview 15min Manling Li

Factual Knowledge 30min Manling Li

Commonsense Knowledge 15min Manling Li

Procedural Knowledge 30min Xudong Lin

Model Knowledge 30min Jie Lei

Panel: Knowledge vs Large Models 15min Mohit Bansal, Carl Vondrick, Xudong Lin

Panel: LLMs for multimodal 15min Mohit Bansal, Carl Vondrick, Jie Lei

Panel: Image vs Video vs Audio vs Others 15min Mohit Bansal, Carl Vondrick, Xudong Lin

Panel: Open Challenges 15min Mohit Bansal, Carl Vondrick, Jie Lei

QA 30min All



Factual Knowledge
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What is “Event” Knowledge?

What happened?

Why Deep Semantics? Image Event Structure
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What is “Event” Knowledge?

What happened?

Yes! A protest.

What are they protesting for?

vaccine

negation

Why Deep Semantics? Image Event Structure



Existing object-centric info miss situational understanding

3

Vision

Why Deep Semantics? Image Event Structure



Existing object-centric info miss situational understanding

3

Vision

Object

Why Deep Semantics? Image Event Structure



Existing object-centric info miss situational understanding

Vision

Object

Relation

Scene Graph

3

behind

hold

hold

hold

Why Deep Semantics? Image Event Structure



Existing object-centric info miss situational understanding

Vision Text

Object

Relation

Scene Graph

3

behind

hold

hold

hold

Why Deep Semantics? Image Event Structure



Existing object-centric info miss situational understanding
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Existing object-centric info miss situational understanding
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Scene Graph Entity-Relation Graph
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Vision Text

Object Entity

Relation Relation

Scene Graph Entity-Relation Graph

Existing object-centric info miss situational understanding

Entity-
centric

3

Why Deep Semantics? Image Event Structure



Vision Text

Object Entity

Relation Relation

Scene Graph Entity-Relation Graph

Existing object-centric info miss situational understanding

3

State-of-the-art Captioner (Kamath et al., 2022)   

Entity-
centric

Why Deep Semantics? Image Event Structure



Definition of “Event”

Protest

What happened?  

Event Protest

Why Deep Semantics? Image Event Structure
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Definition of “Event”
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Definition of “Event”

What happened?  
Who? 

banner

parent 

protester

Protest

protester

tool

child 
child banner

banner
protester

tooltool

Event Protest

Protester parent
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Topic No vaccine 
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A New Task of Multimodal Event Extraction [ACL’20]

Event Rescue
Agent soldier

Agent dog

Target child

agent

rescue

agent
target

What happened?  
Who? 

Event Type
ArgumentEvent Extraction

Input: text, image, video, speech, …

Output: structured knowledge

1. Event Type (e.g., protest)

2. Participants (e.g., child) & Semantic Roles (e.g., protester)

[Manling Li, et al., Cross-media Structured Common Space for Multimedia Event Extraction. ACL 2020]

Why Deep Semantics? Image Event Structure
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What is Multimodal Event Extraction? [Li et al, ACL’20]
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What is Multimodal Event Extraction? [Li et al, ACL’20]

Event Rescue
Agent soldier

Agent dog

Target child

dog
soldier 

agent

rescue

agent
target

Image Event

What happened?  
Who? 

Event Type
ArgumentEvent Extraction

Input: text, image, video, speech, …

Output: structured knowledge

1. Event Type (e.g., protest)

2. Participants (e.g., child) & Semantic Roles (e.g., protester)

[Manling Li, et al., Cross-media Structured Common Space for Multimedia Event Extraction. ACL 2020]

SurfaceGenericA TripletTwo ObjectsEntity-
centric

DeepSituationalSemantic StructuresMultiple ObjectsEvent-
centric
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Goal: Entity-Centric à Event-Centric

84

State-of-the-art Captioner (Kamath et al., 2022)   
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Adding knowledge to pretraining models

Knowledge for 
Model

Knowledge for 
data

85

physical world 
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scene graphs
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labels

pixels



What is factual knowledge?

86

• Multimedia Knowledge Base with entities, relations and events.

Prince William

KB

Flag

Contact.Meet_Participant

The first-ever official visit by a British royal to Israel is underway. Prince William the 36 year-old Duke of Cambridge and second in
line to the throne will meet with both Israeli and Palestinian leaders over the next three days.

event entity

entity: GPE entity: PER event

Israel

visit
Prince 
William



Goal: A joint representation of text and vision knowledge

87



Adding knowledge to pretraining models

Knowledge for 
Model

Knowledge for 
data
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Pixels - An Image is Worth 16x16 Words

89

The simplest way is to split an image into patches



Pixels - Unified Model: Pix2Seq

Another way is to treat pixels as tokens.



Adding knowledge to pretraining models

Knowledge for 
Model

Knowledge for 
data

91

physical world 
knowledge
situational 
knowledge
scene 
graphs
object & 
labels

pixels



Entity Knowledge

• Object Detection: Object instances at the bounding box level
• Semantic Segmentation: Object class at the pixel level
• Instance Segmentation: Object instances at the pixel level

92https://www.v7labs.com/blog/object-detection-guide



The way to obtain entity knowledge: Object Extraction

■ Two-Stage (With Proposal)

93

Ren, S., He, K., Girshick, R., & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. NeurIPS 2015.

Faster RCNN Mask RCNN

■ One-Stage (Without Proposal)

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." CVPR 2016.

YOLO

SSD

He, Kaiming, et al. "Mask r-cnn." CVPR 2017.

Liu, Wei, et al. "Ssd: Single shot multibox detector." ECCV 2016.



Adding objects to V+L Pretraining

94

Objects are used to better mask the regions.



Oscar [ECCV 2020] and VinVL [CVPR 2021]

• Object knowledge is richer.
• Add object label knowledge as anchor points

95Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks, ECCV 2020 
VinVL: Making Visual Representations Matter in Vision-Language Models. CVPR 2021



Soft Prompt Entity Knowledge [CVPR2022]

• [Align and Prompt 2021] Align and Prompt: Video-and-Language Pre-training with 
Entity Prompts
• Adding regional entity prediction task

image source: Align and Prompt: Video-and-Language Pre-training with Entity Prompts

previous work rely on object detectors with expensive 
computation and limited object categories

Individually pre-trained with 
Video-Text Contrastive loss

96

event / action knowledge



Adding knowledge to pretraining models

Knowledge for 
Model

Knowledge for 
data
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physical world 
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ERINE-ViL [AAAI2021]

• Add scene graph knowledge as downstream tasks
• Object prediction
• Attribute prediction
• Relationship prediction

98
ERNIE-ViL: Knowledge Enhanced Vision-Language Representations Through Scene Graph, AAAI 2021 



ERINE-ViL [AAAI2021]

• Add scene graph knowledge as downstream tasks
• Object prediction
• Attribute prediction
• Relationship prediction

99
ERNIE-ViL: Knowledge Enhanced Vision-Language Representations Through Scene Graph, AAAI 2021 



Adding knowledge to pretraining models

Knowledge for 
Model

Knowledge for 
data

100
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Vision vs. NLP for Event Extraction
• Vision does not study newsworthy, complex events 

• Focusing on daily life and sports (Perera et al., 2012; Chang et al., 2016; Zhang et al., 2007; Ma et 
al., 2017) 

• Without localizing a complete set of arguments for each event (Gu et al., 2018; Li et al., 2018; 
Duarte et al., 2018; Sigurdsson et al., 2016; Kato et al., 2018; Wu et al., 2019a)

• Most related: Situation Recognition (Yatskar et al., 2016)
• Classify an image as one of 500+ FrameNet verbs
• Identify 192 generic semantic roles via a 1-word description

101



Vision-only Event and Argument Extraction

• Grounded Situation Recognition adds visual 
argument localization [Pratt et al, 2020]

■ Video Situation Recognition extends the 
work to videos [Sadhu et al, 2021]



Vision-only Event and Argument Extraction

• Another line of work is based on scene 
graphs [Xu et al, 2017; Li et al, 2017; 
Yang et al, 2018; Zellers et al, 2018].
• extracting <subject, predicate, object>

• structure is simpler than the aforementioned 
multi-argument event

• Visual Semantic Parsing is using 
predicate as event, and subject, object, 
instrument as argument [Zareian el al, 
2020]
• Added bounding box grounding



Existing Work: Situation Recognition

Supervised Learning

(Yatskar et al., 2016, …) 

Bottleneck:
Lack of Annotation

(Pratt et al., 2020, …)

Vision-Only

Bottleneck:
Cross-modal Fusion

Why Deep Semantics? Image Event Structure
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Event ExtractionNatural Language Processing
Trigger Word

carry

CLIP-Event: Event-Driven Vision-Language Pretraining

16[Manling Li, et al., CVPR 2022]

(Lin et al, 2020)

Why Deep Semantics? Image Event Structure



Target

Event ExtractionNatural Language Processing
Trigger Word

Argument (Participant)

CLIP-Event: Event-Driven Vision-Language Pretraining

16

(Lin et al, 2020)

Why Deep Semantics? Image Event Structure



Weakly Supervision

16

Transfer text event knowledge to images

(Lin et al, 2020)

Target

Why Deep Semantics? Image Event Structure



Positive
Labels

Negative
Labels
(events)

17

Hard negatives via manipulating event structures

Confusion 
Matrix of

existing V+L models

Target

Target

Why Deep Semantics? Image Event Structure



Positive
Labels

Negative
Labels
(events)

Negative
Labels
(arguments)

17

Hard negatives via manipulating event structures

Role 
SwitchingTarget

Target

Target

Why Deep Semantics? Image Event Structure



Positive
Labels

Negative
Labels
(events)

Negative
Labels
(arguments)

prom
pt

prom
pt

prom
pt

Protesters
transported
injured man
using a
stretcher.

Protesters
arrested
injured man
using a
stretcher.

Injured man
transported a
stretcher with 
protesters.

17

Hard negatives via manipulating event structures

Target

Target

Target
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prom
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Hard negatives via manipulating event structures
Why Deep Semantics? Image Event Structure



Positive
Labels

Negative
Labels
(events)

Negative
Labels
(arguments)

Protesters
transported
injured man
using a
stretcher.

Protesters
arrested
injured man
using a
stretcher.

Injured man
transported a
stretcher with 
protesters.

Text 
Encoder

t0

t1

t2

vIm
age 

Encoder

s(t0,v)

s(t1,v)

s(t2,v)

Contrastive 
Learning

18

Contrastive Learning on Event Semantics
Why Deep Semantics? Image Event Structure



Bottlenecks of Vision Semantic Structure Learning

Supervised Learning

(Yatskar et al., 2016, …) 
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(Pratt et al., 2020, …)

Structural
Transfer

Vision-Only
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The first V+L Pretraining with Event Semantic Structures

Challenge: Structured Encoding

Why Deep Semantics? Image Event Structure



The first V+L Pretraining with Event Semantic Structures
Why Deep Semantics? Image Event Structure



The first V+L Pretraining with Event Semantic Structures

Structured Alignment via Optimal Transport

Text Event Graph Image Event Graph

Why Deep Semantics? Image Event Structure



The first V+L Pretraining with Event Semantic Structures

Structured Alignment via Optimal Transport
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The first V+L Pretraining with Event Semantic Structures

Structured Alignment via Optimal Transport

The optimal T is approximated by a differentiable 
Sinkhorn Knopp algorithm (Sinkhorn, 1964; Cuturi, 2013)

1 Define cost matrix C (embedding similarity)
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Optimization Goal: minimize transport 
distance 
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!
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The first V+L Pretraining with Event Semantic Structures

Structured Alignment via Optimal Transport

The optimal T is approximated by a differentiable 
Sinkhorn Knopp algorithm (Sinkhorn, 1964; Cuturi, 2013)

1 Define cost matrix C (embedding similarity)

2

3

Optimization Goal: minimize transport 
distance 

𝐷 𝑆, 𝑇 = min
!
𝑻 * 𝑪

Optimize the transport plan T within k
iterations

Structured Alignment via Optimal Transport

Text Event Graph Image Event Graph
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CLIP-Event on Visual Event Extraction 

Supporting Zero-shot Vision Event Extraction the first time.
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Our Research Goal: Surface à Deep 
Semantics
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Verbs in Action: Improving verb understanding in 
video-language models

132



Video: A “Visual Recording” of World State Changes
Do SOTA Video-Language Models (VLM) possess fundamental Action Knowledge?

[Zhenhailong Wang, et al., Under Submission (NeurIPS 2023)]
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Video: A “Visual Recording” of World State Changes

Do SOTA Video-Language Models (VLM) possess fundamental Action Knowledge?

- Near random performance on Action Antonym (AA) and Video Reversal (VR)

- Clear biases towards objects compared to actions

Video Action UnderstandingWhy Deep Semantics? Image Event Structure



Patch & Fuse: Patching frozen VLMs with Action Knowledge

Patch frozen VidLMs with action knowledge without hurting their general VL capabilities.
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Video-Action Contrastive (VAC): encourages 
learning the alignment between the video and 
the action verbs

Action-Temporal Matching: encourages 
learning the correct temporal ordering implied 
by the action text

Patch & Fuse: Patching frozen VLMs with Action Knowledge
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Patch & Fuse: Patching frozen VLMs with Action Knowledge

action-centric 
understanding

Video-Action Contrastive (VAC): encourages 
learning the alignment between the video and 
the action verbs

Action-Temporal Matching: encourages 
learning the correct temporal ordering implied 
by the action text
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Results regarding Patch: Before vs After adding Knowledge Patcher 

+ Knowledge
Patcher

Trained with
VTC+DVDM

Adding the Knowledge Patcher nearly doubles the performance.
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Patch & Fuse: Retaining VL Capabilities

action-centric 
understanding

→ not favorable if a 
task is not action-
centric

Video-Action Contrastive (VAC): encourages 
learning the alignment between the video and 
the action verbs

Action-Temporal Matching: encourages 
learning the correct temporal ordering implied 
by the action text

Video Action UnderstandingWhy Deep Semantics? Image Event Structure



A unified representation that has good understanding of both actions and objects. 

Patch & Fuse: Retaining VL Capabilities
Video Action UnderstandingWhy Deep Semantics? Image Event Structure



Video-Text Retrieval
SSv2-Label

Causal-Temporal VQA
NExT-QA

Video-to-Action Retrieval
SSv2-Template Temporal-SSv2

More object-centric More action-centricRequire joint understanding of 
objects and actions

"pushing scissors so that 
it falls off the table"

Video-Text Retrieval: SSv2-label

"pushing something so 
that it falls off the table"

Video-to-Action Retrieval: SSv2-template (where the main object is obfuscated)

Example

Example

Patch & Fuse: Retaining VL Capabilities
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Video-Text Retrieval
SSv2-Label

Causal-Temporal VQA
NExT-QA

Video-to-Action Retrieval
SSv2-Template Temporal-SSv2

More object-centric More action-centricRequire joint understanding of 
objects and actions

Results regarding Fuse: Retaining VL Capabilities

Performs competitively on both object-centric and action-centric tasks.

Video Action UnderstandingWhy Deep Semantics? Image Event Structure



Video Events as Argument State Changes

23

Status Changes of an object = 
Displacement (movement of bounding box)

+ 
Pixel Changes (intra-boundingbox changing)

Video Event = 

Status Changes of Arguments 

Object State Embedding of the man
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Adding knowledge to pretraining models

Knowledge for 
Model

Knowledge for 
data

167

physical world 
knowledge
event 
knowledge
scene 
graphs

object labels

pixels



What is embodied AI?

Aiming at the creation of an embodied agent (e.g., a robot) which learns, through 
interaction and exploration, to creatively solve challenging tasks within its environment.

● See: perceive their environment through vision or other senses.

● Talk: hold a natural language dialog grounded in their environment.

● Listen: understand and react to audio input anywhere in a scene.

● Act: navigate and interact with their environment to accomplish goals.

● Reason: consider and plan for the long-term consequences of their 

actions.



SayCan: Grounding Language in Affordances



SayCan: Grounding Language in Affordances

We need to ground the language model in tasks that are feasible within a 
specific real-world context.



SayCan: Grounding Language in Affordances

Note that the LM 
scores options 
instead of doing 
generation



Combining SayCan with Chain of Thought Prompting

Chain-of-thought prompting can improve examples with negation.



PaLM-E: An Embodied Multimodal Language Model

174

Encoding embodied observations as language tokens.



VIMA: Robot Manipulation with Multimodal Prompts



VIMA: Robot Manipulation with Multimodal Prompts



Zero-shot Generalization: The secret ingredient

- We note that this can only be achieved with both cross-attention and 
object token sequence representation — altering any component will 
degrade the performance significantly,especially in the low model 
capacity regime.

- The data efficiency can be attributed to VIMA’s object-centric 
representation, which is less prone to overfitting than learning directly 
from pixels in the low-data regime. 



Future Challenges

• Structured: Capturing semantic structure
• Abstract: Understanding abstract and complicated concepts 



Future Direction 1: Structure-Aware Encoding

[Ji el al, 2019]



Future Direction 1: Structure-Aware Encoding

Text Vision
• Better in 

capturing details 
with visual 
features



Future Direction 1: Structure-Aware Encoding

Text
• Strong ability 

in reasoning 
and semantic 
structure 
understanding 

Vision
• Better in 

capturing 
details with 
visual 
features

P3IV: Probabilistic Procedure Planning from Instructional Videoswith Weak Supervision



Future Direction 2: Abstract Semantics

Event Protest

Protest

What happened?  

3

Deep Semantic Understanding:

Discover knowledge (important information) that humans are actively 

seeking or communicating.



Future Direction 2: Abstract Semantics

Text generation paradigm (e.g., GPT-3) is taking over the NLP world.
But it is flat and surface-to-surface.

Bounded Knowledge Short Context Surface-to-Surface
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Future Direction 2: Abstract Semantics

Text generation paradigm (e.g., GPT-3) is taking over the NLP world.
But it is flat and surface-to-surface.

Bounded Knowledge Short Context 

COVID-KG [NAACL2021 Beset Demo Paper]

Long 

Horizon

Compositional 

Novel Concept

Surface à Deep
Concrete à Abstract
Static à Dynamic
Perception à Cognition

5

Surface-to-Surface



47

Future Direction 2: Abstract Semantics

Abstract

Abstract Visual Reasoning with Tangram Shapes (EMNLP 2022 Best Paper)
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Future Direction 2: Abstract Semantics

Abstract

Love Happiness Emotion ßà Music
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Future Direction 2: Compositional Semantics

Compositional

COVID 
Vaccination

medical 
personnel

social distance

injection

Vaccination
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Future Direction 2: Abstract Semantics

Reasoning & Explanability



Future Direction 2: Abstract Semantics

When Social Context Meets Semantics: 

Zelensky describes Ukraine war as ‘horror 
film’ at Venice Film Festival opening

Ukrainian President addresses Venice Film 
Festival, calls war ‘drama based on real-life’

Information Surgery

Propaganda Detection

Video Framing

Misinformation Detection

Propagation Path

Reframing
55

Alternative Interpretation & Propaganda



Using LLMs to help

LLMs have good compositional 
ability from low-level observations 
to high level concepts.



Other Open Questions

• Evaluation: 
• Is the performance boost because of adding knowledge?

• Explanability and Reasoning
• How can large models leverage knowledge?

• Continuous learning for large models
• How can large models continue learning more complicated concepts?

• Bias in learning knowledge
• Debiasing with knowledge guidance

211
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Commonsense Knowledge

213

Text Vision

Entity Object

Relation Scene Graph

Event Activity/Situation

Factual Knowledge Common Knowledge Model Knowledge

Procedural 
Knowledge

Common-
sense 

Knowledge
External 

KB

language 
model

Knowledge

V+L model

Knowledge

Commonsense Knowledge is the basic facts and behaviors of the 
everyday world.



Outline

214

What is 
Commonsense 

Knowledge
VCR VisualCOMET Physical 

Knowledge

Knowledge Graph 
Riddles

Knowledge Graph
Embedding

Physical Knowledge Unimodal vs 
Multimodal

Knowledge à
VLM

VLM à
Knowledge



Part 1: What is Visual Commonsense Knowledge?

215



Visual Commonsense Knowledge

• Visual

216

Visual Commonsense Reasoning (VCR): From Recognition to Cognition 

From Recognition to Cognition: Visual Commonsense Reasoning. 2019



Visual Commonsense Knowledge

• Visual

217

VisualCOMET: Cognitive Image Understanding via Visual Commonsense Graphs 

https://mosaickg.apps.allenai.org/visual_cometVisualCOMET: Reasoning About the Dynamic Context of a Still Image



Visual Commonsense Knowledge

• Visual

218https://mosaickg.apps.allenai.org/visual_comet

VisualCOMET Task Formulation: Generate the entire visual commonsense graph



Visual Commonsense Knowledge

• Visual

219

Large Dataset Collection: There are in total 139,377 distinct Visual Commonsense Graphs over 
59,356 images involving 1,465,704 commonsense inferences.



Physical Commonsense Knowledge

220

Physical Commonsense Knowledge can be learned via natural language.

PIQA: Reasoning about Physical Commonsense in Natural Language. AAAI 2020



The “Something Something” Dataset

221
The “something something” video database for learning and evaluating visual common sense



PInKS: Preconditioned Commonsense Inference

222



Part 2: How can commonsense knowledge be learned via V+L pretraining?

223



Failures 

224

Current V+L models lack abilities to capture commonsense knowledge: 

Improving Commonsense in Vision-Language Models via Knowledge Graph Riddles. 2022



DANCE: Improving Commonsense in Vision-Language Models

225

DANCE: Data Augmentation with kNowledge graph linearization for CommonsensE capability

Improving Commonsense in Vision-Language Models via Knowledge Graph Riddles. 2022
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DANCE: Improving Commonsense in Vision-Language Models
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DANCE: Data Augmentation with kNowledge graph linearization for CommonsensE capability



Vision–Language Knowledge Co-Embedding

230



Borrowing Knowledge from Language

231Language Is Not All You Need: Aligning Perception with Language Models. arXiv, 2023



Borrowing Knowledge from Language

232Language Is Not All You Need: Aligning Perception with Language Models. arXiv, 2023



Part 3: Are VLMs commonsense KBs?

233



Probing “Visible” Physical Commonsense Knowledge

234
VIPHY: Probing “Visible” Physical Commonsense Knowledge

visually accessible knowledge representing color, size and space
Visually accessible knowledge representing color, size and space



Probing “Visible” Physical Commonsense Knowledge

235

Visually accessible knowledge representing color, size and space



Are Visual-Linguistic Models Commonsense KBs?

236



Are Visual-Linguistic Models Commonsense KBs?
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Are Visual-Linguistic Models Commonsense KBs?

238

Visual Commonsense Knowledge is more difficult than textual knowledge.



Unimodal vs Multimodal models?

240

Unimodal and multimodal models’ abilities to capture visual commonsense knowledge



Unimodal vs Multimodal models?

241

ViComTe dataset on five relation types: color, shape, material, size, and visual co-occurrence



Unimodal vs Multimodal models?

242

Unimodal and multimodal models’ abilities to capture visual commonsense knowledge

Visual Commonsense in Pretrained Unimodal and Multimodal Models. NAACL 2022



Future Direction: 
Adding commonsense knowledge to pretraining

Knowledge for 
Model

Knowledge for 
data

243

?

Knowledge 
Graph Riddles

Knowledge
Graph

Embedding

Physical 
knowledge

Unimodal vs 
Multimodal

Knowledge 
à VLM

VLM à
Knowledge

• In-context prompt

• data augmentation

• data selection



Future Direction:
Physical Knowledge Enhanced LM/VLM

244

Humans learn a huge amount of knowledge about the external world via multisensory 

experience and interactions, however, current LLM/VLM are trained with static datasets, 

thus lacks understanding of the physical world.

Spatial 
Relation

Knowledge 
requiring 
embodiment



• Humans learn a huge amount of knowledge about the external world via 
multisensory experience and interactions, however, current LLM/VLM are 
trained with static datasets, thus lacks understanding of the physical world.

245

picks up the knife

Stable
Diffusion

v2.1Start Frame

Action Text Generated Image

Start Frame

End Frame

CLIP

c picks up a knife: 0.251
c drops a knife: 0.251
c picks up a pepper: 0.255
c looks around: 0.243

Action classification Causal Effect of Actions

Physical Interactions involving actions and objects

Future Direction:
Physical Knowledge Enhanced LM/VLM

Humans learn a huge amount of knowledge about the external world via multisensory 

experience and interactions, however, current LLM/VLM are trained with static datasets, 

thus lacks understanding of the physical world.



Future Direction:
Physical Knowledge Enhanced LM/VLM

246

From Reading/Seeing to Doing: From passive perception to interaction with the world.

Status 
Change

Affordance

Physical 
Relation

The book 
is on the 
red chair.

Event 
World

Language 
World

Physical 
World



Future Direction 2: 

Disentangling Perception & Reasoning



Initial Exploration: ViperGPT

VIPER-style reasoning shows the potential of treating perception models as tools and LLMs 
as reasoner to solve difficult problems.

[Dídac Surís*, Sachit Menon*, Carl Vondrick. arXiv 2023]



Initial Exploration: ViperGPT

Bottleneck: 
- Reasoning is limited to the commonsense and code generation capabilities of LLMs; 
- Can only handle a single image context. 

[Dídac Surís*, Sachit Menon*, Carl Vondrick. arXiv 2023]



Example: Answering Questions using Tools
question = "At which festival can you see a castle in the background: Oktoberfest in 
Domplatz Austria or Tanabata festival in Hiratsuka, Japan?"
input_data = [(<img1>, "J24 029 Dom, Oktoberfest"), ...]

# In[1]:
# Filter out irrelevant information for the question
input_data = [

data_instance
for data_instance in input_data
if solve(f"is {data_instance[1]} relevant to the question: {question}")
# recursive call
# we can even offload these to a better model (e.g., GPT-3.5)
# if ask_gpt_yes_or_no(f"is {data_instance[1]} relevant to the question: 

{question}")
]
# Out[1]:
input_data == [(<img1>, "J24 029 Dom, Oktoberfest"), (<img6>, "Tanabata festival in 
Hiratsuka")]

# In[2]:
# solve("Which data instance with a image has a castle on the background?")
from multimodal_models import CLIP
img_features = [CLIP.image_encoder(img) for img, text in input_data]
text = "There is a castle in the background"
text_feature = CLIP.text_encoder(text)
has_castle = [cosine_similarity(text_feature, feat) for feat in img_features]
idx_more_likely_to_have_castle = argmax(has_castle)
# Out[2]:
idx_more_likely_to_have_castle == 0
input_data[idx_more_likely_to_have_castle] == (<img1>, "J24 029 Dom, Oktoberfest")

# In[3]:
# Synthesize solution from caption
answer = "You can see a castle in the background at Oktoberfest in Domplatz, Austria"

WebQA

Figure Credits: Xingyao Wang



Future Direction 2: Disentangling Perception & Reasoning

- Perception:
- Vision-only model (e.g., object detection)
- Vision-language model (e.g., captioning, QA)

- Reasoner: Language-only model – We need divide-and-conquer!
- (1) decompose a problem (e.g., a sub-function call)
- (2) use tool to solve a problem (e.g., access external database, fetch relevant 

information)
- (3) update the conclusion (e.g., store something back into the database)

Figure Credits: Xingyao Wang
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Content
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Text Vision

Entity Object

Relation Scene Graph

Event Activity/Situation

Factual Knowledge Common Knowledge Model Knowledge

Procedural 
Knowledge
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sense 

Knowledge
External 

KB

language 
model

V+L 
model

Knowledge

Learning patterns of procedure with human-curated patterns and data.



Agenda

• What is Procedural Knowledge?
• Tasks requiring Procedural knowledge.

264



What is Procedural Knowledge?

• Psychology View

265

Knowledge

Propositional 
Knowledge

Non-
propositional 
Knowledge

Procedural 
Knowledge

Knowledge by 
Acquaintance 

https://www.rep.routledge.com/articles/thematic/knowledge-concept-of/v-1/sections/the-varieties-of-knowledge



What is Procedural Knowledge?

• Psychology View

266

Knowledge

Propositional 
Knowledge

Non-
propositional 
Knowledge

Procedural 
Knowledge

Knowledge by 
Acquaintance 

I know Ottawa is the 
capitol of Canada.



What is Procedural Knowledge?

• Psychology View

267

Knowledge

Propositional 
Knowledge

Non-
propositional 
Knowledge

Procedural 
Knowledge

Knowledge by 
Acquaintance I know someone.



What is Procedural Knowledge?

• Psychology View

268

Knowledge

Propositional 
Knowledge

Non-
propositional 
Knowledge

Procedural 
Knowledge

Knowledge by 
Acquaintance 

I know how to do 
something.



Tasks Requiring Procedural Knowledge

• Procedural planning

269Chang, Chien-Yi, et al. "Procedure planning in instructional videos." European Conference on Computer Vision. Springer, 
Cham, 2020.

Given a start image and an end image, generate a sequence of actions.



Tasks Requiring Procedural Knowledge

• Procedural planning

270Chang, Chien-Yi, et al. "Procedure planning in instructional videos." European Conference on Computer Vision. Springer, 
Cham, 2020.

Given a start image and an end image, generate a sequence of actions.



Tasks Requiring Procedural Knowledge

• Step forecasting

271
Frames are from  Gordon Ramsay’s Fillet of Beef Wellington
Sener, Fadime, and Angela Yao. "Zero-shot anticipation for instructional activities." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
Lin, Xudong, et al. "Learning to recognize procedural activities with distant supervision." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Given the historical video, predict the next step.

What is the next step?

Time



Tasks Requiring Procedural Knowledge

• Step forecasting

272

What is the next step?

Assembling: Shingle the 
prosciutto on the plastic 
wrap; Spread mushroom 

over prosciutto; …
Time

Frames are from  Gordon Ramsay’s Fillet of Beef Wellington
Sener, Fadime, and Angela Yao. "Zero-shot anticipation for instructional activities." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
Lin, Xudong, et al. "Learning to recognize procedural activities with distant supervision." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Given the historical video, predict the next step.



Agenda

• Explicit Knowledge Source: Learning with the help of external knowledge

• Implicit Knowledge Source: Learning procedural knowledge from data

273

Data

Knowledge

Model

(Massive) 
Data Model……



Agenda

• Explicit Knowledge Source: Learning with the help of external knowledge

274

Data

Knowledge

Model



Explicit Knowledge Source
• Procedural knowledge can be easily curated from the Internet

• Recipe1M

275
Salvador, Amaia, et al. "Learning cross-modal embeddings for cooking recipes and food images." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.



Explicit Knowledge Source
• Procedural knowledge can be easily curated from the Internet

• Recipe1M
• wikiHow

276

Step 1. Sear the filiet mignon to brown. 
Over high heat, coat bottom of a heavy skillet with olive 
oil. Once pan is nearly smoking, sear tenderloin until 
well-browned on all sides.

Step 2. Fry the mushroom until they are dried.
To skillet, add butter and melt over medium heat. Add 
mushroom mixture and cook until liquid has evaporated.

Step 3. Assembling.
Shingle the prosciutto on the plastic wrap into a 
rectangle that’s big enough to cover the whole 
tenderloin. Spread the duxelles evenly and thinly over 
the prosciutto.

…...

https://www.wikihow.com/Main-Page
Koupaee, Mahnaz, and William Yang Wang. "Wikihow: A large scale text summarization dataset." arXiv preprint arXiv:1810.09305 (2018).



How to Utilize the Knowledge Source?

Data

Supervision

Model

277

AI



How to Utilize the Knowledge Source?

Data

Supervision

Model

278

AI



Zero-Shot Anticipation for Instructional Activities

279
Sener, Fadime, and Angela Yao. "Zero-shot anticipation for instructional activities." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
Sener, Fadime, Rishabh Saraf, and Angela Yao. "Transferring Knowledge from Text to Video: Zero-Shot Anticipation for Procedural Actions." IEEE Transactions on Pattern Analysis and 
Machine Intelligence (2022).

• Key Idea: Obtain training data from knowledge base.



Zero-Shot Anticipation for Instructional Activities

280

• Sentence encoder encodes a step sentence into a step vector.
• Recipe network is a RNN modeling procedures.
• Sentence decoder decodes step sentences.

Sener, Fadime, and Angela Yao. "Zero-shot anticipation for instructional activities." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
Sener, Fadime, Rishabh Saraf, and Angela Yao. "Transferring Knowledge from Text to Video: Zero-Shot Anticipation for Procedural Actions." IEEE Transactions on Pattern Analysis and 
Machine Intelligence (2022).



Zero-Shot Anticipation for Instructional Activities

281

• Only train the video encoder to project video into step vectors with 
annotated data.

Sener, Fadime, and Angela Yao. "Zero-shot anticipation for instructional activities." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
Sener, Fadime, Rishabh Saraf, and Angela Yao. "Transferring Knowledge from Text to Video: Zero-Shot Anticipation for Procedural Actions." IEEE Transactions on Pattern Analysis and 
Machine Intelligence (2022).



Zero-Shot Anticipation for Instructional Activities

282

• Generalize on new tasks.

Sener, Fadime, and Angela Yao. "Zero-shot anticipation for instructional activities." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
Sener, Fadime, Rishabh Saraf, and Angela Yao. "Transferring Knowledge from Text to Video: Zero-Shot Anticipation for Procedural Actions." IEEE Transactions on Pattern Analysis and 
Machine Intelligence (2022).



Zero-Shot Anticipation for Instructional Activities

283
Sener, Fadime, and Angela Yao. "Zero-shot anticipation for instructional activities." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.

• Strong zero-shot performance on the proposed Tasty video 
dataset

The larger knowledge base used, the better!

• Limitation
• Domain is limited to cooking.
• Rely on annotated data samples for training video encoder.



Non-Sequential Graph Script Induction via 
Multimedia Grounding

284
Zhou, Yu, et al. "Non-Sequential Graph Script Induction via Multimedia Grounding.“ Proceedings of the Conference of the 61st Annual Meeting of the Association for 
Computational Linguistics (ACL), 2023

• Key Idea: Obtain non-sequential script by grounding wikiHow steps to 
video observations.



Non-Sequential Graph Script Induction via 
Multimedia Grounding

285
Zhou, Yu, et al. "Non-Sequential Graph Script Induction via Multimedia Grounding.“ Proceedings of the Conference of the 61st Annual Meeting of the Association for 
Computational Linguistics (ACL), 2023

• Video observations contain real-world variance in procedure, which 
makes wikiHow scripts non-sequential.



Non-Sequential Graph Script Induction via 
Multimedia Grounding

286
Zhou, Yu, et al. "Non-Sequential Graph Script Induction via Multimedia Grounding.“ Proceedings of the Conference of the 61st Annual Meeting of the Association for 
Computational Linguistics (ACL), 2023

• Graphs can be constructed by merging multiple decoded sequence.
• Limitation: closed-vocabulary; text-only graph.



How to Utilize the Knowledge Source?

Data

Supervision

Model
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AI



Learning To Recognize Procedural Activities with
Distant Supervision

288

Pretrained 
Language 

Model

Lin, Xudong, et al. "Learning to recognize procedural activities with distant supervision." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

• Key Idea: Leverage pretrained language model to align 
knowledge base and videos with speech to obtain supervision.



Learning To Recognize Procedural Activities with
Distant Supervision

289

• Step Knowledge Base Construction
• Use 1053 tasks, each of which has at 

least 100 examples in the HowTo100M 
dataset

• Find the corresponding articles on 
WikiHow

• Collect sentences for each step in 
each of the tasks

Lin, Xudong, et al. "Learning to recognize procedural activities with distant supervision." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.



Learning To Recognize Procedural Activities with
Distant Supervision

290

• Distant supervision 
creation

• Leverage a pretrained 
language model to 
produce embeddings 
for both steps and 
ASR sentences from 
the video.

• Then calculate 
similarity between 
each ASR sentence 
and all the steps.

Lin, Xudong, et al. "Learning to recognize procedural activities with distant supervision." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.



Learning To Recognize Procedural Activities with
Distant Supervision

291

ℱ!

Steps

Predicted 
Score

Pretraining: Learning to align videos and the 
step knowledge base

ℱ!

Step KnowledgeBase

How to Replace a Power Window Motor
• Remove the masking tape and lower the window back 

down.
• Insert the window mounting bolts.
• Reinstall the plastic liner and interior panel.

• Plug the electrical cord into a proper electrical outlet.

• Tighten the screws.

wikiHow

D
ow

nstream
 C

lassifier
Finetuning: Training a classifier with both step-level video 

representation and ordering information from the knowledge 
base

…
…

…

Lin, Xudong, et al. "Learning to recognize procedural activities with distant supervision." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.



• Step Forecasting on COIN
• Wikihow Knowledge provides high-quality distant supervision!
• Ordering information in the knowledge base further helps!

Learning To Recognize Procedural Activities with
Distant Supervision

292

• The supervision from the wikihow knowledge base also helps
Recognition of procedural activities on COIN

Egocentric video classification

• Limitation: Didn’t employ ordering information in the pretraining model.



Procedure-Aware Pretraining for Instructional Video 
Understanding

293
Zhou, Honglu, et al. "Procedure-aware pretraining for instructional video understanding." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

• Key Idea: Construct procedural knowledge graph and then use it 
to obtain supervision.



Procedure-Aware Pretraining for Instructional Video 
Understanding

294
Zhou, Honglu, et al. "Procedure-aware pretraining for instructional video understanding." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

• Construct procedural knowledge graph by grounding wikiHow
steps to instructional videos;



Procedure-Aware Pretraining for Instructional Video 
Understanding

295
Zhou, Honglu, et al. "Procedure-aware pretraining for instructional video understanding." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

• Use procedural knowledge graph to supervise a procedure-aware 
model;



Procedure-Aware Pretraining for Instructional Video 
Understanding

296
Zhou, Honglu, et al. "Procedure-aware pretraining for instructional video understanding." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

• The representation produced by the procedure-aware model can 
be directly used for downstream tasks.



Procedure-Aware Pretraining for Instructional Video 
Understanding

297
Zhou, Honglu, et al. "Procedure-aware pretraining for instructional video understanding." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

• Limitation: closed-vocabulary; text-only graph.



How to Utilize the Knowledge Source?

Data

Supervision

Model
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Induce, Edit, Retrieve: Language Grounded 
Multimodal Schema for Instructional Video Retrieval

299
Yang, Yue, et al. "Induce, edit, retrieve: Language grounded multimodal schema for instructional video retrieval." arXiv preprint arXiv:2111.09276 (2021).

• Key Idea: Learning multimodal schema to represent procedural 
knowledge.



Induce, Edit, Retrieve: Language Grounded 
Multimodal Schema for Instructional Video Retrieval

300
Yang, Yue, et al. "Induce, edit, retrieve: Language grounded multimodal schema for instructional video retrieval." arXiv preprint arXiv:2111.09276 (2021).

• Schema Induction
• For each task, find corresponding steps 

from wikiHow and videos from YouTube.
• For each segment in each video, retrieve 

most relevant steps with existing video-text 
matching models.



Induce, Edit, Retrieve: Language Grounded 
Multimodal Schema for Instructional Video Retrieval

301
Yang, Yue, et al. "Induce, edit, retrieve: Language grounded multimodal schema for instructional video retrieval." arXiv preprint arXiv:2111.09276 (2021).

• Schema Editing
• For an unseen task, find the most similar 

seen task based on both textual and visual 
similarity. 



Induce, Edit, Retrieve: Language Grounded 
Multimodal Schema for Instructional Video Retrieval
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Yang, Yue, et al. "Induce, edit, retrieve: Language grounded multimodal schema for instructional video retrieval." arXiv preprint arXiv:2111.09276 (2021).

• Schema Editing
• For an unseen task, find the most similar 

seen task based on both textual and visual 
similarity

• Replace object towards the unseen task.



Induce, Edit, Retrieve: Language Grounded 
Multimodal Schema for Instructional Video Retrieval
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Yang, Yue, et al. "Induce, edit, retrieve: Language grounded multimodal schema for instructional video retrieval." arXiv preprint arXiv:2111.09276 (2021).

• Schema Editing
• For an unseen task, find the most similar 

seen task based on both textual and visual 
similarity

• Replace object towards the unseen task.
• Delete steps that are not relevant in the 

new task with a pretrained language model.



Induce, Edit, Retrieve: Language Grounded 
Multimodal Schema for Instructional Video Retrieval
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Yang, Yue, et al. "Induce, edit, retrieve: Language grounded multimodal schema for instructional video retrieval." arXiv preprint arXiv:2111.09276 (2021).

• Schema Editing
• For an unseen task, find the most similar 

seen task based on both textual and visual 
similarity

• Replace object towards the unseen task.
• Delete steps that are not relevant in the 

new task with a pretrained language model.
• Replace tokens least likely associated with 

the task in each step by prompting a 
pretrained language model.



Induce, Edit, Retrieve: Language Grounded 
Multimodal Schema for Instructional Video Retrieval
• The learned schema provides step-level 

information to better retrieve videos.

305

Even comparable with oracle (using manual step annotation for each query)

Yang, Yue, et al. "Induce, edit, retrieve: Language grounded multimodal schema for instructional video retrieval." arXiv preprint arXiv:2111.09276 (2021).

• Limitation
• Schema is restricted to step sequence without 

considering graph structures, e.g., 
optional/exchangeable steps.

• Only evaluated on text-video retrieval.



Summary of Methods Using Explicit Knowledge

Sener & Yao ICCV  2019 Lin et al. CVPR 2022 Yang et al. 2021

Knowledge as data ü

Knowledge as supervision ü

Knowledge for model ü ü

Sequential knowledge ü ü ü

Multimodal knowledge ü
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Summary of Methods Using Explicit Knowledge
Sener & Yao ICCV  

2019
Lin et al. CVPR 

2022
Yang et al. 2021 Zhou et al. ACL 

2023
Zhou et al. CVPR 

2023
Knowledge as data ü ü

Knowledge as 
supervision

ü ü

Knowledge for 
model

ü ü

Sequential 
knowledge

ü ü ü

Multimodal 
knowledge

ü
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• What is next?



Future Challenge: Interpret but Not Memorize

• Do models understand why the steps are ordered as in the knowledge 
base?

308

Cut lemon in half.

Squeeze lemon to get juice.

Add sugar. Add Ice.

How to make lemonade?

What is the intent of this step?

Why these two steps cannot be exchanged?



Open Problem: Open-vocabulary

• Can the knowledge be automatically extended to open-vocabulary?
• Generalize to new tasks;
• Discover new steps and add them in the knowledge base…

309

Cut lemon in half.

Squeeze lemon to get juice.

Add sugar. Add Ice.

How to make lemonade?

New step 
discovered from 
video: Carbonate

Generalize to new tasks: 
Make Berrynade

https://www.youtube.com/watch?v=GaC14YpDJHw



Agenda

• Explicit Knowledge Source: Learning with the help of external knowledge
• Implicit Knowledge Source: Learning procedural knowledge from data

310

(Massive) 
Data Model……



MERLOT: 
Multimodal Neural Script Knowledge Models

311

• Key Idea: Learning temporal reasoning ability through massive 
video data.

Zellers, Rowan, et al. "Merlot: Multimodal neural script knowledge models." Advances in Neural Information Processing Systems 34 (2021): 23634-23651.



MERLOT: 
Multimodal Neural Script Knowledge Models

312

• Objective 1: Alignment between frame representations and text 
representations

Zellers, Rowan, et al. "Merlot: Multimodal neural script knowledge models." Advances in Neural Information Processing Systems 34 (2021): 23634-23651.



MERLOT: 
Multimodal Neural Script Knowledge Models

313

• Objective 2: Masked Token Modeling.

Zellers, Rowan, et al. "Merlot: Multimodal neural script knowledge models." Advances in Neural Information Processing Systems 34 (2021): 23634-23651.



MERLOT: 
Multimodal Neural Script Knowledge Models

314
Zellers, Rowan, et al. "Merlot: Multimodal neural script knowledge models." Advances in Neural Information Processing Systems 34 (2021): 23634-23651.

• Objective 3: Temporal Ordering (Binary classification between each 
pair of frames).



• The model learns strong temporal reasoning ability and joint video-language 
reasoning ability.

MERLOT: 
Multimodal Neural Script Knowledge Models

315
Zellers, Rowan, et al. "Merlot: Multimodal neural script knowledge models." Advances in Neural Information Processing Systems 34 (2021): 23634-23651.

Ordering Images from Visual Stories State-of-the-art over various video-language tasks

Predict future event given historical videos

• Limitation: short temporal span; importance of the temporal ordering loss is unclear.



MERLOT Reserve: Neural Script Knowledge through 
Vision and Language and Sound

316

• Key Idea: Jointly learn script knowledge with video, language and 
audio.

Zellers, Rowan, et al. "Merlot reserve: Neural script knowledge through vision and language and sound." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2022.



MERLOT Reserve: Neural Script Knowledge through 
Vision and Language and Sound

317

• Key objective design: contrastive loss between predicted and 
actual representation of the masked audio/text

Zellers, Rowan, et al. "Merlot reserve: Neural script knowledge through vision and language and sound." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2022.



• Audio brings extra supervision and information towards stronger video 
understanding and video-language performance.

• Limitation: improvement on learned procedural knowledge may be less 
significant.

MERLOT Reserve: Neural Script Knowledge through 
Vision and Language and Sound

318
Zellers, Rowan, et al. "Merlot reserve: Neural script knowledge through vision and language and sound." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2022.

Requiring understand procedures of actions/objects

Action Recognition



Language models as zero-shot planners: Extracting 
actionable knowledge for embodied agents

319

• Key Idea: Large language models learn rich procedural 
knowledge and such knowledge could be extracted.

Huang, Wenlong, et al. "Language models as zero-shot planners: Extracting actionable knowledge for embodied agents." International Conference on Machine Learning. PMLR, 2022.



Language models as zero-shot planners: Extracting 
actionable knowledge for embodied agents

320

• Impressive results.
• Challenge: verification; groundability to real-world videos.

Huang, Wenlong, et al. "Language models as zero-shot planners: Extracting actionable knowledge for embodied agents." International Conference on Machine Learning. PMLR, 2022.



Summary of Methods Learning Implicit Knowledge
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Implicit 
Procedural 
Knowledge

Temporally 
Ordered 

Data

Capable
Models

Order-
aware 

Objectives



Future Challenge: Is there a critical point on scale?

• Can models learn procedural knowledge with a limited scale?

322
Wei, Jason, et al. "Emergent abilities of large language models." arXiv preprint arXiv:2206.07682 (2022).

Many reasoning ability of 
large language models 

emerge when the model 
scale is larger than a 

critical point.



Future Challenge: From an instance to a set

• Can models learn from temporally ordered sets of instances?

323

Current Data Instance

Real-world complex task
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_New_York_City#cite_note-48
https://nypost.com/2020/10/04/here-are-the-nyc-zip-codes-targeted-for-new-covid-19-lockdown/
https://www.governor.ny.gov/news/amid-ongoing-covid-19-pandemic-governor-cuomo-issues-executive-order-requiring-all-people-new
https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19
https://www.nature.com/articles/d41586-020-02684-9

…



Take-away Messages

324

Learning Procedural 
Knowledge

Explicit Knowledge 
Source

As data

As Supervision

In Models

Implicit Knowledge 
Source

Temporal Data + Temporal 
Objective + Capable Models

Future Challenges:

Interpret but not memorize;

Towards open-vocabulary;

Learning with limited scale;

From an instance to a set;

…
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Overview
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Text Vision

Entity Object

Relation Scene Graph

Event Activity/Situation

Factual Knowledge Common Knowledge Model Knowledge

Procedural 
Knowledge

Common-
sense 

Knowledge

language 
model

V+L 
model

Knowledge

Compared to raw data, knowledge is important and useful information.

External 
KB



Agenda

Part 1. Language knowledge helps learn better vision models
• Pure vision tasks: object detection, image classification, etc. 
• Multimodal tasks with vision signals: VQA, video captioning, etc.

Part 2. Vision knowledge helps learn better language models
• Human learn language by connecting the words to their visual appearance in the 

surrounding world.
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Language Vision



Part 1. Language à Vision

• Implicit knowledge from pre-trained Language Models (LM)

• Explicit knowledge from human curated sources (e.g., wiki) or model 
generated knowledge (e.g., GPT-3 generated category definitions)
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Part 1.1 Implicit Knowledge from Language Models
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Frozen

Multimodal Few-Shot Learning with Frozen Language Models, Tsimpoukelli et al., NeurIPS 2021

7B auto-
regressive LM

ResNet-50

• Preserve LM ability by freezing it during cross-modal model training.
• Gradient: frozen LM à vision encoder

Visual 
prompts

330



Frozen

Multimodal Few-Shot Learning with Frozen Language Models, Tsimpoukelli et al., NeurIPS 2021

• Few-shot multimodal in-context learning after trained on 3M image-text pairs.

VQAv2 OKVQA

Wiki 
knowledge

Large gap w/ 
SOTA

• Reasonably good zero/few-shot performance, but still underperform SOTA: limited multimodal data? 
(3M); LM is relatively small? (7B)
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Flamingo

Flamingo: a Visual Language Model for Few-Shot Learning, Alayrac et al, NeurIPS 2022

• A frozen 70B pre-trained LM + a frozen pre-trained ResNet.
• Trained w/ image/video-text pairs, along with interleaved image-text data (M3W), which is important for in-

context learning. 

M3W: 43M webpages (185M images)

ALIGN: 1.8B + 
LTIP: 312M images VTP: 27M videos
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Flamingo

Flamingo: a Visual Language Model for Few-Shot Learning, Alayrac et al, NeurIPS 2022

• Left: larger model works better; more in-context examples helps.

• Right: thanks to larger model and more training data, he model 
achieves comparable or better results than SOTA on multiple tasks.
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Flamingo

Flamingo: a Visual Language Model for Few-Shot Learning, Alayrac et al, NeurIPS 2022

• Left: larger model works better; more in-context examples helps.

• Right: thanks to larger model and more training data, he model 
achieves comparable or better results than SOTA on multiple tasks.
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Expensive! The 80 model has 10B trainable parameters and is 
trained with 1536 TPUv4 chips for 15 days.



BLIP-2, Learning w/ Frozen LLM

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models, Li et al, arXiv 2023

• Architecture: frozen image encoder + a light-weight Q-Former + frozen LLM
• Two stage training:

• Stage 1 vision-language representation learning: image-text contrastive & matching, image captioning
• Stage 2 vision-language generative learning: generate text conditioned on image

• Q-Former: BERT-base, using learned query vectors with cross-attention to extract visual info. 
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BLIP-2: Bootstrapping Language-Image Pre-training

with Frozen Image Encoders and Large Language Models

Junnan Li Dongxu Li Silvio Savarese Steven Hoi

Salesforce Research

https://github.com/salesforce/LAVIS/tree/main/projects/blip2

Abstract

The cost of vision-and-language pre-training has
become increasingly prohibitive due to end-to-
end training of large-scale models. This paper
proposes BLIP-2, a generic and efficient pre-
training strategy that bootstraps vision-language
pre-training from off-the-shelf frozen pre-trained
image encoders and frozen large language mod-
els. BLIP-2 bridges the modality gap with a
lightweight Querying Transformer, which is pre-
trained in two stages. The first stage boot-
straps vision-language representation learning
from a frozen image encoder. The second stage
bootstraps vision-to-language generative learning
from a frozen language model. BLIP-2 achieves
state-of-the-art performance on various vision-
language tasks, despite having significantly fewer
trainable parameters than existing methods. For
example, our model outperforms Flamingo80B by
8.7% on zero-shot VQAv2 with 54x fewer train-
able parameters. We also demonstrate the model’s
emerging capabilities of zero-shot image-to-text
generation that can follow natural language in-
structions.

1. Introduction

Vision-language pre-training (VLP) research has witnessed
a rapid advancement in the past few years, where pre-trained
models with increasingly larger scale have been developed
to continuously push the state-of-the-art on various down-
stream tasks (Radford et al., 2021; Li et al., 2021; 2022;
Wang et al., 2022a; Alayrac et al., 2022; Wang et al., 2022b).
However, most state-of-the-art vision-language models in-
cur a high computation cost during pre-training, due to
end-to-end training using large-scale models and datasets.

Vision-language research sits at the intersection between
vision and language, therefore it is naturally expected
that vision-language models can harvest from the readily-
available unimodal models from the vision and natural lan-

Querying Transformer
Q-Former

Large
Language

Model
(LLM)

Queries
Text

Image
Encoder

Bootstrapping Pre-trained
Image Models

Bootstrapping Pre-trained
Large Language Models (LLMs)

…

Vision-and-Language
Representation Learning

Vision-to-Language 
Generative Learning

Write a romantic message 
that goes along this photo.

Love is like a sunset, it’s 
hard to see it coming but 
when it does it’s so beautiful.

Figure 1. Overview of BLIP-2’s framework. We pre-train a
lightweight Querying Transformer following a two-stage strat-
egy to bridge the modality gap. The first stage bootstraps vision-
language representation learning from a frozen image encoder. The
second stage bootstraps vision-to-language generative learning
from a frozen LLM, which enables zero-shot instructed image-to-
text generation (see Figure 4 for more examples).

guage communities. In this paper, we propose a generic and
compute-efficient VLP method by bootstrapping from off-
the-shelf pre-trained vision models and language models.
Pre-trained vision models offer high-quality visual represen-
tation. Pre-trained language models, in particular large lan-

guage models (LLMs), offer strong language generation and
zero-shot transfer abilities. To reduce computation cost and
counteract the issue of catastrophic forgetting, the unimodal
pre-trained models remain frozen during the pre-training.

In order to leverage pre-trained unimodal models for VLP,
it is key to facilitate cross-modal alignment. However, since
LLMs have not seen images during their unimodal pre-
training, freezing them makes vision-language alignment
in particular challenging. In this regard, existing methods
(e.g. Frozen (Tsimpoukelli et al., 2021), Flamingo (Alayrac
et al., 2022)) resort to an image-to-text generation loss,
which we show is insufficient to bridge the modality gap.

To achieve effective vision-language alignment with frozen
unimodal models, we propose a Querying Transformer (Q-
Former) pre-trained with a new two-stage pre-training strat-
egy. As shown in Figure 1, Q-Former is a lightweight trans-
former which employs a set of learnable query vectors to
extract visual features from the frozen image encoder. It
acts as an information bottleneck between the frozen image
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BLIP-2, Learning w/ Frozen LLM

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models, Li et al, arXiv 2023

• Architecture: frozen image encoder + a light-weight Q-Former + frozen LLM
• Two stage training:

• Stage 1 vision-language representation learning: image-text contrastive & matching, image captioning
• Stage 2 vision-language generative learning: generate text conditioned on image

• Q-Former: BERT-base, using learned query vectors with cross-attention to extract visual info.

• Trained on 129M image-text pairs
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BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models

Models #Trainable
Params

Open-
sourced?

Visual Question Answering Image Captioning Image-Text Retrieval

VQAv2 (test-dev) NoCaps (val) Flickr (test)
VQA acc. CIDEr SPICE TR@1 IR@1

BLIP (Li et al., 2022) 583M X - 113.2 14.8 96.7 86.7
SimVLM (Wang et al., 2021b) 1.4B 7 - 112.2 - - -
BEIT-3 (Wang et al., 2022b) 1.9B 7 - - - 94.9 81.5
Flamingo (Alayrac et al., 2022) 10.2B 7 56.3 - - - -

BLIP-2 188M X 65.0 121.6 15.8 97.6 89.7

Table 1. Overview of BLIP-2 results on various zero-shot vision-language tasks. Compared with previous state-of-the-art models. BLIP-2
achieves the highest zero-shot performance while requiring the least number of trainable parameters during vision-language pre-training.

Models #Trainable
Params

#Total
Params

VQAv2 OK-VQA GQA
val test-dev test test-dev

VL-T5no-vqa 224M 269M 13.5 - 5.8 6.3
FewVLM (Jin et al., 2022) 740M 785M 47.7 - 16.5 29.3
Frozen (Tsimpoukelli et al., 2021) 40M 7.1B 29.6 - 5.9 -
VLKD (Dai et al., 2022) 406M 832M 42.6 44.5 13.3 -
Flamingo3B (Alayrac et al., 2022) 1.4B 3.2B - 49.2 41.2 -
Flamingo9B (Alayrac et al., 2022) 1.8B 9.3B - 51.8 44.7 -
Flamingo80B (Alayrac et al., 2022) 10.2B 80B - 56.3 50.6 -

BLIP-2 ViT-L OPT2.7B 104M 3.1B 50.1 49.7 30.2 33.9
BLIP-2 ViT-G OPT2.7B 107M 3.8B 53.5 52.3 31.7 34.6
BLIP-2 ViT-G OPT6.7B 108M 7.8B 54.3 52.6 36.4 36.4
BLIP-2 ViT-L FlanT5XL 103M 3.4B 62.6 62.3 39.4 44.4
BLIP-2 ViT-G FlanT5XL 107M 4.1B 63.1 63.0 40.7 44.2
BLIP-2 ViT-G FlanT5XXL 108M 12.1B 65.2 65.0 45.9 44.7

Table 2. Comparison with state-of-the-art methods on zero-shot visual question answering.

4. Experiment

Table 1 provides an overview of the performance of BLIP-2
on various zero-shot vision-language tasks. Compared to
previous state-of-the-art models, BLIP-2 achieves improved
performance while requiring substantially fewer number of
trainable parameters during vision-language pre-training.

4.1. Instructed Zero-shot Image-to-Text Generation

BLIP-2 effectively enables a LLM to understand images
while preserving its capability in following text prompts,
which allows us to control image-to-text generation with
instructions. We simply append the text prompt after the
visual prompt as input to the LLM. Figure 4 shows exam-
ples to demonstrate a wide range of zero-shot image-to-text
capabilities including visual knowledge reasoning, visual
commensense reasoning, visual conversation, personalized
image-to-text generation, etc.

Zero-shot VQA. We perform quantitative evaluation on the
zero-shot visual question answering task. For OPT models,
we use the prompt “Question: {} Answer:”. For FlanT5
models, we use the prompt “Question: {} Short answer:”.
During generation, we use beam search with a beam width
of 5. We also set the length-penalty to -1 which encourages
shorter answers that align better with human annotation.

As shown in Table 2. BLIP-2 achieves state-of-the-art result
on the VQAv2 (Goyal et al., 2017) and GQA (Hudson &
Manning, 2019) datasets. It outperforms Flamingo80B by
8.7% on VQAv2, despite having 54x fewer trainable parame-
ters. On the OK-VQA (Marino et al., 2019) dataset, BLIP-2
comes secondary to Flamingo80B. We hypothesis that this is
because OK-VQA focuses more on open-world knowledge
than visual understanding, and the 70B Chinchilla (Hoff-
mann et al., 2022) language model from Flamingo80B pos-
sesses more knowledge than the 11B FlanT5XXL.

We make a promising observation from Table 2: a stronger

image encoder or a stronger LLM both lead to better

performance. This observation is supported by several
facts: (1) ViT-G outperforms ViT-L for both OPT and
FlanT5. (2) Within the same LLM family, larger mod-
els outperform smaller ones. (3) FlanT5, an instruction-
tuned LLM, outperforms the unsupervised-trained OPT
on VQA. This observation validates BLIP-2 as a generic

vision-language pre-training method that can efficiently
harvest the rapid advances in vision and natural language
communities.

Effect of Vision-Language Representation Learning.

The first-stage representation learning pre-trains the Q-
Former to learn visual features relevant to the text, which
reduces the burden of the LLM to learn vision-language

Results on zero-shot vision-language tasks. 



InstructBLIP

InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning, Dai et al, arXiv 2023

• Architecture: same as BLIP-2, except instruction text is added to Q-Former for instruction-aware visual 
feature extraction

• Training: BLIP-2 pre-training + Instruction Finetuning on 13 held-in datasets
• Evaluation: on both held-in and held-out datasets
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InstructBLIP Model Overview
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Figure 3: Model architecture of InstructBLIP. The Q-Former extracts instruction-aware visual features
from the output embeddings of the frozen image encoder, and feeds the visual features as soft prompt
input to the frozen LLM. We instruction-tune the model with the language modeling loss to generate
the response.

2.1 Tasks and Datasets

To ensure the diversity of instruction tuning data while considering their accessibility, we gather
a wide range of publicly available vision-language datasets, and transform them into instruction
tuning format. As shown in Figure 2, the final collection covers 11 task categories and 28 datasets,
including image captioning [23, 3, 50], image captioning with reading comprehension [37], visual
reasoning [16, 24, 28], image question answering [11, 12], knowledge-grounded image question
answering [29, 35, 27], image question answering with reading comprehension [30, 38], image
question generation (inversed from the QA datasets), video question answering [46, 48], visual
conversational question answering [8], image classification [18], and LLaVA-Instruct-150K [25]. We
include detailed descriptions and statistics of each dataset in Appendix C.

For every task, we meticulously craft 10 to 15 distinct instruction templates in natural language.
These templates serve as the foundation for constructing instruction tuning data, which articulates
the task and delineates the objective. For public datasets inherently favoring short responses, we
use terms such as short and briefly into some of their corresponding instruction templates to reduce
the risk of the model overfitting to always generating short outputs. For the LLaVA-Instruct-150K
dataset, we do not incorporate additional instruction templates since it is naturally structured in the
instruction format. The full list of instruction templates can be found in Appendix D.

2.2 Training and Evaluation Protocols

To encompass a wide range of tasks for training while simultaneously reserving an adequate amount
of unseen data for comprehensive zero-shot evaluations, we divide the 26 datasets into 13 held-in
datasets and 13 held-out datasets, denoted by yellow and white colors in Figure 2. We employ
training sets of held-in datasets for instruction tuning and utilize their validation or test sets for held-in
evaluation.

For held-out evaluation, our aim is to understand how instruction tuning improves the model’s zero-
shot generalization performance on unseen data. In this paper, we define two types of held-out data:
1) datasets not exposed to the model during training, but whose tasks are present within the held-in
cluster; 2) datasets and their associated tasks that remain entirely unseen during the training process.
Addressing the first type of held-out evaluation is nontrivial due to image distribution shift between
held-in and held-out datasets. As for the second type, we hold out several tasks completely, including
visual reasoning, video question answering, visual conversational QA, and image classification.

Datasets are selected carefully to avoid data contamination (no evaluation data appear in the held-in
training cluster across different datasets). During instruction tuning, we mix all the held-in training
sets and sample instruction templates uniformly for each dataset. The models are trained with the
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InstructBLIP: Instruction Tuning vs. Multi-task

InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning, Dai et al, arXiv 2023

• Instruction tuned model excels in unseen datasets and tasks
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3.4 Instruction Tuning vs. Multitask Learning
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Figure 4: Comparison of instruction tuning and multitask training based on BLIP-2 FlanT5XL
backbone. For held-in evaluation, we compute the average score across all held-in datasets. For
held-out evaluation, we compute the average score across GQA, TextVQA, VSR, HatefulMemes,
IconQA, ScienceQA, iVQA, VizWiz.

A direct analogue to instruction tuning is multitask learning, a widely used method that involves
the simultaneous training of multiple datasets with the goal of improving the performance of each
individual dataset. To investigate whether the improvement in zero-shot generalization observed in
instruction tuning is mainly from the formatting of instructions or merely from multitasking, we
conduct a comparative analysis between these two approaches under identical training settings.

Following [45], we consider two multitask training approaches. In the first approach, the model is
trained using the vanilla input-output format of the training datasets without instructions. During
evaluation, instructions are still provided to the model, indicating the specific task to be performed.
However, an exception is made for image captioning, as the model achieves better scores when only
receiving the image as input. For the second approach, we take a step towards instruction tuning by
prepending a [Task:Dataset] identifier to the text input during training. For example, we prepend
[Visual question answering:VQAv2] for the VQAv2 dataset. During evaluation, we explore
both instructions and this identifier. Particularly, for the identifier of held-out datasets, we only use
the task name since the model never sees the dataset name.

The results are shown in Figure 4, including BLIP-2 zero-shot, multitask training, and instruction
tuning. All of these models are based on the BLIP-2 FlanT5XL backbone and adhere to the identical
training configurations delineated in Section 2. Overall, we can conclude two insights from the
results. Firstly, instruction tuning and multitask learning exhibit similar performance on the held-in
datasets. This suggests that the model can fit these two different input patterns comparably well, as
long as it has been trained with such data. On the other hand, instruction tuning yields a significant
improvement over multitask learning on unseen held-out datasets, whereas multitask learning still
performs on par with the original BLIP-2. This indicates that instruction tuning is the key to enhance
the model’s zero-shot generalization ability.

3.5 Finetuning InstructBLIP on Downstream Tasks

We further finetune the InstructBLIP models to investigate its performance on learning a specific
dataset. Compared to most previous methods (e.g., Flamingo, BLIP-2) which increase the input
image resolution and finetune the visual encoder on downstream tasks, InstructBLIP maintains the
same image resolution (224⇥224) during instruction tuning and keeps the visual encoder frozen
during finetuning. This significantly reduces the number of trainable parameters from 1.2B to 188M,
thus greatly improves finetuning efficiency.

The results are shown in Table 3. Compared to BLIP-2, InstructBLIP leads to better finetuning
performance on all datasets, which validates InstructBLIP as a better weight initialization model
for task-specific finetuning. InstructBLIP sets new state-of-the-art finetuning performance on Sci-

8

Strategy Template (use VQAv2 dataset as an example)
Instruction
Tuning

• <image> Question: {question} Short answer:
• <image> What is the answer to the following question? {question}
• <image> Based on the image, respond to this question with a short answer: {Question}. Answer: 
• ...

Multi-task • Plain text: {image} {question} à {answer}
• Dataset  Name: {image} [Visual question answering:VQAv2] {question} à {answer}



The method discussed above all require additional 
multi-modal pre-training, however, it is very expensive 
for LLMs. Is there an alternative way to utilize 
knowledge in LLMs? 
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PICa for few-shot knowledge-based VQA

An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA, Yang et al, AAAI 2022

• Summarize image info in text form with an image-to-text model, and prompt GPT-3 to get an answer.
• Image QA problem is converted into a text QA problem.
• Implicit GPT-3 knowledge <->  previous approaches explicitly query external knowledge
• Few-shot w/o parameter update.

e.g., image captioning model
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PICa for few-shot knowledge-based VQA
• Works better than fine-tuned models that use explicit wiki knowledge.

An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA, Yang et al, AAAI 2022

OKVQA
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• A core issue: image-to-text models are not perfect, it will cause information loss.



VidIL: LLM video + language learning
• Generate frame-level info at various granularity, and put them in a temporal aware prompt for LLM.

Language Models with Image Descriptors are Strong Few-Shot Video-Language Learners, Wang et al, NeurIPS 2022
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Socratic: Composing Multi-modality w/ LLM
• A modular framework in which multiple pretrained models may be composed zero-shot through 

language without training. 

Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language, Zeng et al, ICLR 2023

Visual LM

LM + Audio LM

LM + Visual LM

LM

Summarize ego-centric videos.
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Socratic: Composing Multi-modality w/ LLM
• The model works well on vision-language

tasks such as image captioning, it can 
also parse & generate robot instructions 
from free form human language.

Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language, Zeng et al, ICLR 2023

COCO 
Captions

Visual LM

User 
Instruction

LM
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Human defines when to use which model.



Visual ChatGPT, ViperGPT, …
• Visual ChatGPT defines a few system 

principles, and give ChatGPT the autonomy
execute actions: 

• System definition.
• Define name & usage of vision models.
• Chain-of-Thought.
• Be strict about filename.
• Regex to parse executable actions from 

language.
• …

Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models, Wu et al, arXiv 2023
ViperGPT: Visual Inference via Python Execution for Reasoning, Suris et al, arXiv 2023 
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Architecture of Visual ChatGPT

Visual ChatGPT is very flexible, as the LLM 
controls when to use which foundation 
models, instead of human.

• More general tool learning framework
• ViperGPT uses generated Python code to 

compose pre-defined APIs.
• AutoGPT, New Bing, Bard, …



LLM for ZS multi-modal learning: Pros/Cons

Pros
• It provides an efficient way to utilize foundation models of different modalities, no extra training required.
• The approaches are modular: new modules can be seamlessly plugged into the framework.

Cons
• Modality specific models are not perfect, there will be info loss when converted into text. 

• The lower performance vs. e2e trained Flamingo model might partly due to this info loss.

An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA, Yang et al, AAAI 2022

Failure cases from the PICa model.
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The use of implicit knowledge from pre-trained LMs 
shows strong zero-shot performance for multi-modal 
tasks, however, they are hard to interpret. Is there a 
more interpretable way of using language knowledge?
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Part 1.2 Explicit Knowledge from Language
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K-LITE

• External knowledge is 
useful to help the model 
understand rare concepts.

K-LITE: Learning Transferable Visual Models with External Knowledge, Shen et al., NeurIPS 2022

①

②

③ Concat Language & Knowledge

349

• a photo of sashimi,
• a photo of takoyaki,
…

• a photo of sashimi. A 
dish consisting of 
slices or ….

• a photo of takoyaki, a 
ball-shaped Japanese 
dumpling…

…

Add knowledge



K-LITE

K-LITE: Learning Transferable Visual Models with External Knowledge, Shen et al., NeurIPS 2022

• Orange: knowledge improves zero-shot performance on 16/20 image classification datasets.
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ELEVATER

ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models, NeurIPS 2022

• Same K-LITE model, but with GPT-3 knowledge 
• GPT-3 knowledge improves ZS image classification and object detection. More is better.
• GPT-3 + wiki is often better for image classification, but not for object detection.

Zero-shot performance
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Vision à Language

Could vision knowledge help learn language?
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Could vision knowledge help learn language?

Look! This is a “cat”!

“ButterCup”, cat photo credit to Xiaoyu Xiang
How children learn the meanings of words. Paul Bloom. 2002. MIT press.
Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision, Tan et al., EMNLP 2020

• Visual pointing is an essential step for most children to learn meanings of words [Bloom 2002].
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Vokenization: LM w/ Vision Supervision

Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision, Tan et al., EMNLP 2020

• Besides standard Masked Language Modeling (MLM), the LM is also trained w/ a voken classification 
task, by assigning each text token into one of the images (vokens) in the pool.

• Vokens are pre-defined, and are obtained by using a pre-trained image-text retrieval model
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Vokenization: LM w/ Vision Supervision

Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision, Tan et al., EMNLP 2020

• Voken classification task improves LM performance on a wide range of pure-language tasks.
• This conclusion holds for both BERT and RoBERTa.
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VidLanKD: LM w/ Video-Distilled Knowledge

VIDLANKD: Improving Language Understanding via Video-Distilled Knowledge Transfer, Tang et al., NeurIPS 2021

• Vokenization suffers from approximation error of using finite image labels + the lack of vocabulary 
diversity of a small image-text dataset (COCO).

• VidLanKD improves it by (1) using knowledge distillation instead of discrete vokenization to avoid 
approximation error; (2) using a large-scale video-language dataset HowTo100M.
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VidLanKD: LM w/ Video-Distilled Knowledge

VIDLANKD: Improving Language Understanding via Video-Distilled Knowledge Transfer, Tang et al., NeurIPS 2021

• The teacher LM is trained with (a) video-language triplet loss; + (b) masked language modeling
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VidLanKD: LM w/ Video-Distilled Knowledge

VIDLANKD: Improving Language Understanding via Video-Distilled Knowledge Transfer, Tang et al., NeurIPS 2021

• The student LM is trained with (a) knowledge distillation; + (b) masked language modeling
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VidLanKD: LM w/ Video-Distilled Knowledge

VIDLANKD: Improving Language Understanding via Video-Distilled Knowledge Transfer, Tang et al., NeurIPS 2021

• Cross-modal KD (last 2 rows) achieves better performance than image vokenization.

• Performance gain is mostly from knowledge, physical interaction, & temporal reasoning

PIQA: QA w/ physical interactions + commonsense reasoning 
TRACIE: a temporal reasoning benchmark
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Future Work

360

• How to better bridge LLM and other modalities?
• Is frozen LLM the best approach?
•

Flamingo

BLIP-2: Bootstrapping Language-Image Pre-training

with Frozen Image Encoders and Large Language Models

Junnan Li Dongxu Li Silvio Savarese Steven Hoi

Salesforce Research

https://github.com/salesforce/LAVIS/tree/main/projects/blip2

Abstract

The cost of vision-and-language pre-training has
become increasingly prohibitive due to end-to-
end training of large-scale models. This paper
proposes BLIP-2, a generic and efficient pre-
training strategy that bootstraps vision-language
pre-training from off-the-shelf frozen pre-trained
image encoders and frozen large language mod-
els. BLIP-2 bridges the modality gap with a
lightweight Querying Transformer, which is pre-
trained in two stages. The first stage boot-
straps vision-language representation learning
from a frozen image encoder. The second stage
bootstraps vision-to-language generative learning
from a frozen language model. BLIP-2 achieves
state-of-the-art performance on various vision-
language tasks, despite having significantly fewer
trainable parameters than existing methods. For
example, our model outperforms Flamingo80B by
8.7% on zero-shot VQAv2 with 54x fewer train-
able parameters. We also demonstrate the model’s
emerging capabilities of zero-shot image-to-text
generation that can follow natural language in-
structions.

1. Introduction

Vision-language pre-training (VLP) research has witnessed
a rapid advancement in the past few years, where pre-trained
models with increasingly larger scale have been developed
to continuously push the state-of-the-art on various down-
stream tasks (Radford et al., 2021; Li et al., 2021; 2022;
Wang et al., 2022a; Alayrac et al., 2022; Wang et al., 2022b).
However, most state-of-the-art vision-language models in-
cur a high computation cost during pre-training, due to
end-to-end training using large-scale models and datasets.

Vision-language research sits at the intersection between
vision and language, therefore it is naturally expected
that vision-language models can harvest from the readily-
available unimodal models from the vision and natural lan-

Querying Transformer
Q-Former

Large
Language

Model
(LLM)

Queries
Text

Image
Encoder

Bootstrapping Pre-trained
Image Models

Bootstrapping Pre-trained
Large Language Models (LLMs)

…

Vision-and-Language
Representation Learning

Vision-to-Language 
Generative Learning

Write a romantic message 
that goes along this photo.

Love is like a sunset, it’s 
hard to see it coming but 
when it does it’s so beautiful.

Figure 1. Overview of BLIP-2’s framework. We pre-train a
lightweight Querying Transformer following a two-stage strat-
egy to bridge the modality gap. The first stage bootstraps vision-
language representation learning from a frozen image encoder. The
second stage bootstraps vision-to-language generative learning
from a frozen LLM, which enables zero-shot instructed image-to-
text generation (see Figure 4 for more examples).

guage communities. In this paper, we propose a generic and
compute-efficient VLP method by bootstrapping from off-
the-shelf pre-trained vision models and language models.
Pre-trained vision models offer high-quality visual represen-
tation. Pre-trained language models, in particular large lan-

guage models (LLMs), offer strong language generation and
zero-shot transfer abilities. To reduce computation cost and
counteract the issue of catastrophic forgetting, the unimodal
pre-trained models remain frozen during the pre-training.

In order to leverage pre-trained unimodal models for VLP,
it is key to facilitate cross-modal alignment. However, since
LLMs have not seen images during their unimodal pre-
training, freezing them makes vision-language alignment
in particular challenging. In this regard, existing methods
(e.g. Frozen (Tsimpoukelli et al., 2021), Flamingo (Alayrac
et al., 2022)) resort to an image-to-text generation loss,
which we show is insufficient to bridge the modality gap.

To achieve effective vision-language alignment with frozen
unimodal models, we propose a Querying Transformer (Q-
Former) pre-trained with a new two-stage pre-training strat-
egy. As shown in Figure 1, Q-Former is a lightweight trans-
former which employs a set of learnable query vectors to
extract visual features from the frozen image encoder. It
acts as an information bottleneck between the frozen image
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Future Work
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• How to better bridge LLM and other modalities?
• Is frozen LLM the best approach?
• If more than one modalities are needed, how to better model them together?

Flamingo

BLIP-2: Bootstrapping Language-Image Pre-training

with Frozen Image Encoders and Large Language Models

Junnan Li Dongxu Li Silvio Savarese Steven Hoi

Salesforce Research

https://github.com/salesforce/LAVIS/tree/main/projects/blip2

Abstract

The cost of vision-and-language pre-training has
become increasingly prohibitive due to end-to-
end training of large-scale models. This paper
proposes BLIP-2, a generic and efficient pre-
training strategy that bootstraps vision-language
pre-training from off-the-shelf frozen pre-trained
image encoders and frozen large language mod-
els. BLIP-2 bridges the modality gap with a
lightweight Querying Transformer, which is pre-
trained in two stages. The first stage boot-
straps vision-language representation learning
from a frozen image encoder. The second stage
bootstraps vision-to-language generative learning
from a frozen language model. BLIP-2 achieves
state-of-the-art performance on various vision-
language tasks, despite having significantly fewer
trainable parameters than existing methods. For
example, our model outperforms Flamingo80B by
8.7% on zero-shot VQAv2 with 54x fewer train-
able parameters. We also demonstrate the model’s
emerging capabilities of zero-shot image-to-text
generation that can follow natural language in-
structions.

1. Introduction

Vision-language pre-training (VLP) research has witnessed
a rapid advancement in the past few years, where pre-trained
models with increasingly larger scale have been developed
to continuously push the state-of-the-art on various down-
stream tasks (Radford et al., 2021; Li et al., 2021; 2022;
Wang et al., 2022a; Alayrac et al., 2022; Wang et al., 2022b).
However, most state-of-the-art vision-language models in-
cur a high computation cost during pre-training, due to
end-to-end training using large-scale models and datasets.

Vision-language research sits at the intersection between
vision and language, therefore it is naturally expected
that vision-language models can harvest from the readily-
available unimodal models from the vision and natural lan-
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hard to see it coming but 
when it does it’s so beautiful.

Figure 1. Overview of BLIP-2’s framework. We pre-train a
lightweight Querying Transformer following a two-stage strat-
egy to bridge the modality gap. The first stage bootstraps vision-
language representation learning from a frozen image encoder. The
second stage bootstraps vision-to-language generative learning
from a frozen LLM, which enables zero-shot instructed image-to-
text generation (see Figure 4 for more examples).

guage communities. In this paper, we propose a generic and
compute-efficient VLP method by bootstrapping from off-
the-shelf pre-trained vision models and language models.
Pre-trained vision models offer high-quality visual represen-
tation. Pre-trained language models, in particular large lan-

guage models (LLMs), offer strong language generation and
zero-shot transfer abilities. To reduce computation cost and
counteract the issue of catastrophic forgetting, the unimodal
pre-trained models remain frozen during the pre-training.

In order to leverage pre-trained unimodal models for VLP,
it is key to facilitate cross-modal alignment. However, since
LLMs have not seen images during their unimodal pre-
training, freezing them makes vision-language alignment
in particular challenging. In this regard, existing methods
(e.g. Frozen (Tsimpoukelli et al., 2021), Flamingo (Alayrac
et al., 2022)) resort to an image-to-text generation loss,
which we show is insufficient to bridge the modality gap.

To achieve effective vision-language alignment with frozen
unimodal models, we propose a Querying Transformer (Q-
Former) pre-trained with a new two-stage pre-training strat-
egy. As shown in Figure 1, Q-Former is a lightweight trans-
former which employs a set of learnable query vectors to
extract visual features from the frozen image encoder. It
acts as an information bottleneck between the frozen image
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Future Work
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• Using vision (image or video) supervision has shown some early success.

Figure credit to Julien Simon, https://huggingface.co/blog/large-language-models

• Bidirectional LM only, casual LM is not 
explored.

• Small model (up to 110M BERT-base), 
vs., 175B GPT-3

• How about using other modalities 
(audio) as supervision?

•
BERT-Base (110M)

GPT-3 (175GB)



Take-way Messages

• Vision knowledge via vokenization or distillation improves LMs, especially for 
physical and commonsense knowledge, and temporal reasoning.

L à V: Implicit 
Knowledge

Training vision model 
w/ frozen LM

Convert multimodal 
task as text task for LM

• Preserves the in-context learning ability of LM.
• Larger LM is better, the same as pure language tasks.
• They are quite general and are applicable to a wide 

range of tasks.

• All of above.
• Computation efficient: no finetuning is required.
• Inherently modular, easy to update individual modules.
• May suffer info loss when during the conversion to text.

• Human curated (e.g., wordnet) or LLM (GPT-3) improves image classification and 
object detection, especially these with rare concepts.

V à L

L à V: Explicit 
Knowledge
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Future work • Efficient learning with LLM
• Scaling-up vision supervised LMs
• … 
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Knowledge-Driven Vision-Language Encoding
Panel 1: Explicit Knowledge vs Implicit Knowledge
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Manling Li
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What is the appropriate format of knowledge representation?

Does explicit knowledge still have value in the era of large models?
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Manling Li
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What can we borrow from Large Language Models (LLMs)? 
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Manling Li
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What is the bottleneck for each single modality?

What is the bottleneck to bring multiple modalities together?
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What is the recommended thesis topic for next few years?


