Feb 2023 AAAI Tutorials Knowledge-Driven Vision-Language Pretraining

Knowledge-Driven Vision-Language Pretraining

Feb 2023 AAAI Tutorials Knowledge-Driven Vision-Language Pretraining

Factual Knowledge in V+L Pretraining: Information about Instances

Knowledge-Driven Vision-Language Pretraining (Part II)

Manling Li UIUC manling2@illinois.edu

Compared to raw data, knowledge is important and useful information.

Adding knowledge to pretraining models

What is factual knowledge?

• Multimedia Knowledge Base with entities, relations and events.

The first-ever official visit by a British royal to Israel is underway. Prince William the 36 year-old Duke of Cambridge and second in line to the throne will meet with both Israeli and Palestinian leaders over the next three days.

Contact.Meet_Participant

Goal: A joint representation of text and vision knowledge

6

Adding knowledge to pretraining models

An Image is Worth 16x16 Words

The simplest way is to split an image into patches

Another way is to treat pixels as tokens.

Adding knowledge to pretraining models

Entity Knowledge

- Object Detection: Object instances at the bounding box level
- Semantic Segmentation: Object class at the pixel level
- Instance Segmentation: Object instances at the pixel level

Semantic Segmentation Instance Segmentation

The way to obtain entity knowledge: Object Extraction

Ren, S., He, K., Girshick, R., & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. *NeurIPS 2015*. He, Kaiming, et al. "Mask r-cnn." *CVPR* 2017.

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." *CVPR* 2016. Liu, Wei, et al. "Ssd: Single shot multibox detector." *ECCV* 2016.

Objects are used to better mask the regions.

Adding knowledge to pretraining models

Oscar [ECCV 2020] and VinVL [CVPR 2021]

- Object knowledge is richer.
 - Add object label knowledge as anchor points

	Contrastive Loss Masked Token Loss													
Features														
Network						Multi	-Layer	Transf	ormers					
Embeddings	\bigcirc								\bigcirc					
Data	[CLS]	<u>А</u>	dog	is W	[MASK ord Tol] on kens	а	couch	[SEP]	dog Objec	couch	[SEP]	Region	Features
Modality	•							Lan	guage		Image			
Dictionary											Languag	е		

Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks, ECCV 2020 VinVL: Making Visual Representations Matter in Vision-Language Models. CVPR 2021

Soft Prompt Entity Knowledge [CVPR2022]

- [Align and Prompt 2021] Align and Prompt: Video-and-Language Pre-training with Entity Prompts
 - Adding regional entity prediction task

previous work rely on object detectors with expensive computation and limited object categories

image source: Align and Prompt: Video-and-Language Pre-training with Entity Prompts

Adding knowledge to pretraining models

ERINE-ViL [AAAI2021]

- Add scene graph knowledge as downstream tasks
 - Object prediction
 - Attribute prediction
 - Relationship prediction

(a) Objects

A tan **dog** and a little girl kiss.

The little girl is kissing the brown cat.

(b) Attributes

A black dog playing with a **purple** toy.

A black dog playing with a green toy.

(c) Relationships

A man in red plaid rides his bike in a park.

An older man **repairing** a bike tire in a park.

ERNIE-ViL: Knowledge Enhanced Vision-Language Representations Through Scene Graph, AAAI 2021

ERINE-ViL [AAAI2021]

• Add scene graph knowledge as downstream tasks

ERNIE-ViL: Knowledge Enhanced Vision-Language Representations Through Scene Graph, AAAI 2021

Adding knowledge to pretraining models

Vision vs. NLP for Event Extraction

- Vision does not study newsworthy, complex events
 - Focusing on daily life and sports (Perera et al., 2012; Chang et al., 2016; Zhang et al., 2007; Ma et al., 2017)
 - Without localizing a complete set of arguments for each event (Gu et al., 2018; Li et al., 2018; ۲ Duarte et al., 2018; Sigurdsson et al., 2016; Kato et al., 2018; Wu et al., 2019a)
- Most related: Situation Recognition (Yatskar et al., 2016) •
 - Classify an image as one of 500+ FrameNet verbs ullet
 - Identify 192 generic semantic roles via a 1-word description ۲

CLIPPING												
ALUE		ROLE	VALUE									
MAN		AGENT	VET									
SHEEP		SOURCE	DOG									
HEARS		TOOL	CLIPPER									
WOOL		ITEM	CLAW									
FIELD		PLACE	ROOM									
	ALUE MAN SHEEP SHEARS WOOL FIELD	CLIPPII MAN SHEEP SHEARS WOOL FIELD	CLIPPING ALUE ROLE MAN AGENT SHEEP SOURCE SHEARS TOOL WOOL ITEM FIELD PLACE									

	JU	MPIN	
ROLE	VALUE		
AGENT	BOY		
SOURCE	CLIFF		
OBSTACLE	-		
DESTINATION	WATER		
PLACE	LAKE		

JUMPING										
VALUE	ROLE	VALUE								
BOY	AGENT	BEAR								
CLIFF	SOURCE	ICEBERG								
-	OBSTACLE	WATER								
WATER	DESTINATION	ICEBERG								
LAKE	PLACE	OUTDOOR								

SPRAYING											
ROLE	VALUE		ROLE	VALUE							
AGENT	MAN		AGENT	FIREMAN							
SOURCE	SPRAY CAN		SOURCE	HOSE							
SUBSTANCE	PAINT		SUBSTANCE	WATER							
ESTINATION	WALL		DESTINATION	FIRE							
PLACE	ALLEYWAY		PLACE	OUTSIDE							

Vision-only Event and Argument Extraction

Place

River

Grounded Situation Recognition adds visual argument localization [Pratt et al, 2020]

Jumping

Sofa

Female

Child

Sofa

Video Situation Recognition extends the work to videos [Sadhu et al, 2021]

	2 Seconds			
Event 1 Os-2s		Verb: deflect (block, av Arg0 (deflector) Arg1 (thing deflected) Scene	roid) woman with shield boulder city park	Ev3 is enabled by
Event 2 2s-4s		Verb: talk (speak) Arg0 (talker) Arg2 (hearer) ArgM (manner) Scene	woman with shield man with trident urgently city park	Ev3 is a reaction to Ev2
Event 3 4s-6s		Verb: leap (physically l Arg0 (jumper) Arg1 (obstacle) ArgM (direction) ArgM (goal) Scene	eap) man with trident over stairs towards shirtless man to attack shirtless man city park	
Event 4 6s-8s		Verb: punch (to hit) Arg0 (agent) Arg1 (entity punched) ArgM (direction) Scene	shirtless man man with trident far into distance city park	Ev4 is a reaction to Ev3 Ev5 is unrelated to Ev3
Event 5 8s-10s		Verb: punch (to hit) Arg0 (agent) Arg1 (entity punched) ArgM (direction) Scene	shirtless man woman with shield down the stairs city park	

Vision-only Event and Argument Extraction

- Another line of work is based on scene graphs [Xu et al, 2017; Li et al, 2017; Yang et al, 2018; Zellers et al, 2018].
 - extracting <subject, predicate, object>
 - structure is simpler than the aforementioned multi-argument event
- Visual Semantic Parsing is using predicate as event, and subject, object, instrument as argument [Zareian el al, 2020]
 - Added bounding box grounding

CLIP-Event: Event-Driven Vision-Language Pretraining

CLIP-Event: Event-Driven Vision-Language Pretraining

• Transfer text event knowledge to images: Using text event structures as a distant supervision

• Construct hard negatives by manipulating event structures.

stretcher

Instrument

• Construct hard negatives by manipulating event structures.

• Construct hard negatives by manipulating event structures.

 Caption Text i

 Image i

 Negative

Protesters arrested injured man using a stretcher.

Negative Labels (events)

Negative Labels (arguments)

Injured man transported a stretcher with protesters.

Caption Text t

Antigovernment protesters <u>carry</u> an injured man on a stretcher after clashes with riot police on Independence Square in Kyiv on February 20, 2014.

Transport pers **Structured Alignment via Optimal Transport** njured man Person entity perso agent carry protesters Text Event Graph $\leftarrow \rightarrow$ Image Event Graph Istrument persol DE Attac/ CO person stretcl agent clashes bench Place police FAC Independence Square building

Event Level Alignment

20

Structured Alignment via Optimal Transport

Text Event Graph $\leftarrow \rightarrow$ Image Event Graph

Event Level Alignment

The optimal T is approximated by a differentiable Sinkhorn Knopp algorithm (Sinkhorn, 1964; Cuturi, 2013)

$$egin{aligned} m{T} &= ext{diag}(m{p}) \exp(-m{C}/\gamma) ext{diag}(m{q}) \ & ext{for} \ i &= 0, 1, 2, \dots ext{until convergence}, \ m{p}^{i+1} &= m{1} \oslash (m{K}m{q}^i), \ m{q}^{i+1} &= m{1} \oslash (m{K}m{q}^i), \ m{T}^{k+1} &= m{1} \oslash (m{K}^ opm{p}^{i+1}), \ m{T}^k &:= ext{diag}(m{p}^k)m{K} ext{diag}(m{q}^k) \end{aligned}$$

Structured Alignment via Optimal Transport

Text Event Graph $\leftarrow \rightarrow$ Image Event Graph

Define cost matrix *C* (embedding similarity)

Optimization Goal: minimize transport

2 distance

 $D(S,T) = \min_{T} T \cdot C$

Event Level Alignment

The optimal T is approximated by a differentiable Sinkhorn Knopp algorithm (Sinkhorn, 1964; Cuturi, 2013)

$$\boldsymbol{T} = \operatorname{diag}(\boldsymbol{p}) \exp(-\boldsymbol{C}/\gamma) \operatorname{diag}(\boldsymbol{q})$$

for $i = 0, 1, 2, \dots$ until convergence,

$$egin{aligned} oldsymbol{p}^{i+1} &= oldsymbol{1} \oslash (oldsymbol{K}oldsymbol{q}^i), \ oldsymbol{q}^{i+1} &= oldsymbol{1} \oslash (oldsymbol{K}^ op oldsymbol{p}^{i+1}), \ oldsymbol{T}^k &:= ext{diag}(oldsymbol{p}^k)oldsymbol{K} ext{diag}(oldsymbol{q}^k) \end{aligned}$$

20

 We collect 106,875 image-captions that are rich in events from VOA news website.

Split	# image	# event	# arg	# ent
Train	76,256	84,120	148,262	573,016
Test	18,310	21,211	39,375	87,671
No-event	12,309	-	-	-

It is a challenging image-retrieval benchmark, aiming to understand long sentence
 Average sentence 13.4
 11.3
 28.2

Text Event Extraction Results

- State-of-the-art IE (149 event types, Lin et al, 2020)
- 108,693
 captions
- 84,120 events
- 0.8 events in average (we filter the captions without events during training)

Supporting Zero-shot Vision Event Extraction the first time.

Injecting event knowledge benefits various generic tasks.

Question: Why is Person1 attacking Person2?

Answer:

(1) Person1 is trying to defeat
Person2 so that he can help
Person1 escape .
(2) Person2 does not want to be having the conversation , and
Person1 has cornered him into it.
(3) Because he is angry at him.
(4) Person1 is a bully and is beating him up .

Video Event =

Status Changes of Arguments

Status Changes of an object = Displacement (movement of bounding box) + Pixel Changes (intra-boundingbox changing)

Object State Embedding of the man

Video Event =

Status Changes of Arguments

Status Changes of an object = Displacement (movement of bounding box) + Pixel Changes (intra-boundingbox changing)

Results – Verb & Semantic Role Prediction

Model	Kinetics	Val Test						st		
	KIIICUCS	Acc@1	Acc@5	Rec@5	F ₁ @5	Acc@1	Acc@5	Rec@5	F ₁ @5	
TimeSformer	1	45.91	79.97	23.61	18.23	-	-	-	-	
I3D [†]	×	30.17	66.83	4.88	4.56	31.43	67.70	5.02	4.67	
SlowFast [†]	×	32.64	69.22	6.11	5.61	33.94	70.54	6.56	6.00	
I3D [†]	1	29.65	60.77	18.21	14.01	29.87	59.10	19.54	14.68	
SlowFast [†]	1	46.79	75.90	23.38	17.87	46.37	75.28	25.78	19.20	
Ours (OSE-pixel + OME)	1	52.75	83.88	28.44	21.24	52.14	83.84	30.66	22.45	
Ours (OSE-pixel/disp + OME)	1	✓ 53.32		28.61	21.34	51.88	83.55 30.83		22.52	
Ours (OSE-pixel/disp + OME + OIE)	1	53.36	83.94	28.72	21.40	52.39	83.47	30.74	22.47	
	Res	ults on Ver	b Classifica	tion						
Medel	CI	DEr	CID	Er-Verb		CIDEr-Ar	g	ROUGE	3-L	
	Avg Std			g Std		Avg Std		d Avg		
GPT2 [†]	34	1.67	4	12.97		34.45		40.08)	
I3D [†]	47	7.06	4	51.67		42.76		42.41		
SlowFast [†]	45	5.52	4	55.47		42.82		42.66	Ì	
SlowFast	44.49	± 2.30	51.7	$'3 \pm 2.70$	4	0.93 ± 2.4	42	40.83 ± 1	1.27	
Ours (OSE-pixel + OME)	47.82	± 2.12	54.5	1 ± 3.00	4	44.32 ±2.45		40.91 ±1.32		
Ours (OSE-pixel/disp + OME)	48.46	±1.84	56.0	56.04 ±2.12		44.60 ±2.33		$\textbf{41.89} \pm \textbf{1.12}$		
Ours (OSE -pixel/disp + OME + OIE)	47.16	± 1.71	53.9	53.96 ± 1.32		2.78 ± 2.7	74	40.86 ± 2.54		

Results on Semantic Role Prediction

Understanding videos via Objects, Events, Attributes

Unique challenges for video-language tasks

Multiple levels of semantics: a video may contain visual features with different granularity

Solution: Hierarchical textual representation of videos by leveraging *image-language foundation models* and *semantic role labeling guidance*

The temporal dimension: objects and events in videos are dynamically related

Solution: Temporal-aware few-shot prompt

How to make GPT-3 understand videos?

Image-Language Model

		•										
Visual	Objects	Objects cake decorating, sugar paste, clay animation, play-doh										
Token	Events	utting mat, woman shaped cake, cake is made, flowered design										
Level	Attributes	made of fondant, edg	ade of fondant, edging, rubbing, paper doilies, green goo									
Frame Level	Frame Captions	a person holding a green object in their hand	person holding a reen object in heir handa person is putting a green leaf on a baby's heada person cutting a piece of paper with a pair of scissors									
Language Model												
*												
Video Level	NextQuestion: What will happen next?EventAnswer: the person puts the flower on top of the baby-evelPrediction											

VidIL (Ours) Framework

Temporal-Aware Few-shot Prompt

Mothod	ASP MSR-VTT Caption			YouCook2 Caption				VaTex Caption						
Methou	ASK	B-4	R-L	\mathbf{M}^{-}	С	B-4	R-L	\mathbf{M}^{-}	С	B-4	R-L	M	С	Avg C
Few-shot														
UniVL BLIP BLIP _{cap} VidIL(ours)	No No No No	2.1 27.7 21.6 26.0	22.5 43.0 48.0 51.7	9.5 23.0 22.7 24.7	3.6 39.5 30.2 36.3	3.3 0.7 3.7 2.6	25.3 9.0 8.6 22.9	11.6 3.4 3.8 9.5	34.1 11.5 9.4 27.0	1.7 13.5 20.7 22.2	15.7 39.5 41.5 43.6	8.0 15.4 17.4 20.0	2.1 20.7 28.9 36.7	13.3 23.9 22.8 33.3
UniVL VidIL(ours)	Yes Yes	-	-	-	-	4.3 10.7	26.4 35.9	12.2 19.4	48.6 111.6	2.7 23.2	17.7 44.2	10.2 20.6	3.4 38.9	26.0 75.3
Fine-tuning														
UniVL UniVL	No Yes	42.0	61.0	29.0	50.1	11.2 16.6	40.1 45.7	17.6 21.6	127.0 176.8	22.8 23.7	38.6 39.3	22.3 22.7	33.4 35.6	70.2 106.2

Video Captioning

Method	#video _{PT}	#videoft	MSR-VTT	MSVD
BLIP BLIP	0 0	0-shot 5-shot	0.55 0.84	0.45 0.53
$\frac{\text{BLIP}_{VQA} [26]}{\text{VidIL(ours)}}$	0 0	0-shot 5-shot	19.2 21.2	35.2 39.1
Flamingo-3B [2]	27M	4-shot	14.9	33.0
Flamingo-3B [2]	27M	8-shot	19.6	37.0
Flamingo-80B [2]	27M	4-shot	23.9	41.7
Flamingo-80B [2]	27M	8-shot	27.6	45.5
ALPRO [25]	2M	full-shot	42.1	45.9

Video Question Answering

Method	#video _{FT}	Acc
VLEP [23] MERLOT [67] VidIL(ours)	20142 20142 10-shot	67.5 68.4 72.0
Human	-	90.5

supervised

Video-Language Future Event Prediction (VLEP)

59

MSR-VTT Caption	YouCook2 Caption	VaTex Caption	
		drink up	
Objects:First,interview.Then,cabletelevision.Afterthat,televisionprogram.Finally,sportscommentator.Events:Attributes:Frame Captions:	Objects: Events: Attributes: Captions: Subtitle: Now our sausages are pretty much cooks going to take those out all the time. And we're going to now, my cat gravy as source.	Objects: Events: Attributes: First, tagging. Then, woodburning. After that, wood burning. Finally, turning on dial. Frame Captions: First, a piece of wood with words drink up written on it	
UniVL: a man is playing a man with a man . BLIP: a man in a suit and tie sitting on a couch Ours: an interview with a sports commentator	UniVL: add the sausages to the pan Ours: take the sausages out of the pan and add some gravy to the plate	UniVL: you ' re ready to decorate your cake BLIP: a person holding a string with a small object in front of them Ours: A person is making a sign that says "Drink Up" with a wood burning kit.	
Ground Truths:2 men are discussing sports on a talk showa man being interviewed on a tv show	Ground Truth: • remove sausages from pan	Ground Truth: Someone uses a wood burning tool to burn a design into a slice of wood and then begins to brush polyurethane unto it.	

Video-language Future Event Prediction

Frame Captions: First, a woman holding a plate in a kitchen. Then, a man sitting at a table with two mugs. Finally, a woman holding a pizza in a kitchen.

Dialogue: Bernadette : I don't think you are. Raj : You didn't think I was gonna be in your kitchen this morning, Raj : yet here I am. Question: What is more likely to happen next? A:Bernadette will drop the dishes and break them. B:Bernadette will put the dishes in the sink Answer:

VidIL Prediction: Bernadette will put the dishes in the sink

60

Future Challenges

- Structured: Capturing semantic structure
- Abstract: Understanding abstract and complicated concepts

Future Direction 1: Structured Encoding

Future Direction 1: Structured Encoding

time

Action: "Sitting on a sofa"

Spatio-temporal scene graphs

Future Direction 1: Structured Encoding

P3IV: Probabilistic Procedure Planning from Instructional Videoswith Weak Supervision

Deep Semantic Understanding:

Discover knowledge (important information) that humans are actively seeking or communicating.

Text generation paradigm (e.g., GPT-3) is taking over the NLP world. But it is flat and surface-to-surface.

Text generation paradigm (e.g., GPT-3) is taking over the NLP world. But it is flat and surface-to-surface.

Surface \rightarrow Deep Concrete \rightarrow Abstract Static \rightarrow Dynamic Perception \rightarrow Cognition

Text generation paradigm (e.g., GPT-3) is taking over the NLP world. But it is flat and surface-to-surface.

Abstract

Love

Happiness

Emotion $\leftarrow \rightarrow$ Music

Future Direction 2: Compositional Semantics

Compositional

Future Direction 2: Compositional Semantics

Future Research: From Surface to Deep Semantics

