Feb 2023 AAAI Tutorials Knowledge-Driven Vision-Language Pretraining

Knowledge-Driven Vision-Language Pretraining

Feb 2023 AAAI Tutorials Knowledge-Driven Vision-Language

Pretraining

Commonsense Knowledge in V+L Pretraining

Knowledge-Driven Vision-Language Pretraining (Part III)

Manling Li UIUC manling2@illinois.edu

Commonsense Knowledge is the basic facts and behaviors of the everyday world.

Part 1: What is Visual Commonsense Knowledge?

Visual Commonsense Reasoning (VCR): From Recognition to Cognition

VisualCOMET: Cognitive Image Understanding via Visual Commonsense Graphs

VisualCOMET Task Formulation: Generate the entire visual commonsense graph

8

Large Dataset Collection: There are in total 139,377 distinct Visual Commonsense Graphs over 59,356 images involving 1,465,704 commonsense inferences.

	\parallel Train	\mathbf{Dev}	Test	Total
# Images/Places # Events at Present	$\begin{array}{ c c c c } & 47,595 \\ & 111,796 \end{array}$	5,973 13,768	$5,968 \\ 13,813$	$59,356 \\ 139,377$
# Inferences on Events Before# Inferences on Events After# Inferences on Intents at Present	$\begin{array}{ c c c c c } 467,025 \\ 469,430 \\ 237,608 \end{array}$	58,773 58,665 28,904	58,413 58,323 28,568	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
# Total Inferences	$\ $ 1,174,063	$146,\!332$	145,309	1,465,704

Physical Commonsense Knowledge can be learned via natural language.

The "Something Something" Dataset

Putting a white remote into a cardboard box

Pretending to put candy onto chair

Pushing a green chilli so that it falls off the table

Moving puncher closer to scissor

The "something something" video database for learning and evaluating visual common sense

10 selected classes

Dropping [something] Moving [something] from right to left Moving [something] from left to right Picking [something] up Putting [something] Poking [something] Tearing [something] Pouring [something] Holding [something] Showing [something] (almost no hand)

Part 2: How can commonsense knowledge be learned via V+L pretraining?

Current V+L models lack abilities to capture commonsense knowledge:

Vision–Language Knowledge Co-Embedding

0.1%

98%

1.7%

0.2%

14%

0.8%

85%

Part 3: Are VLMs commonsense KBs?

Probing "Visible" Physical Commonsense Knowledge

Visually accessible knowledge representing color, size and space

VIPHY: Probing "Visible" Physical Commonsense Knowledge

Probing "Visible" Physical Commonsense Knowledge

Visually accessible knowledge representing color, size and space

Task	Setting	Prompt
Color	ZS FT QA	<i>O</i> is of [MASK] color [CLS] color of <i>O</i> What is the color of <i>O</i> ? (a) (b)
Size	ZS FT QA	O_1 is [MASK] than O_2 in size [CLS] size of O_1 in comparison to O_2 what is the size of O_1 in comparison to O_2 ? (a) (b)
Spatial	ZS	in a S, the O_1 is located [MASK] the O_2
	FT	[CLS] in a S, the O_1 is located in comparison to O_2
	QA	in a S, where is O_1 is located in comparison to O_2 ? (a) (b)

Are Visual-Linguistic Models Commonsense KBs?

CS dimension	Starting prompt	Answer candidates	# Instances
part-whole	Furry animals have	A_1 : effect of chilling innovation. A_2 : millions of hair. A_3 : hole in.	1,165
taxonomic	Recruit is a way to	A_1 : rate. A_2 : enlist. A_3 : slope.	1,323
distinctness	Shade is not	A ₁ : flat. A ₂ : postal worker. A ₃ : sunny.	828
similarity	Throw up is a synonym of	A_1 : rutinic acid. A_2 : random. A_3 : vomit.	644
quality	A wet floor is	A_1 : slippery. A_2 : light brown. A_3 : abbreviated to unido.	1,840
utility	A fork is used for	A_1 : speed of transit. A_2 : confuse voters. A_3 : picking up food.	2,090
creation	Music is created by	A_1 : olive oil mill. A_2 : mapping process. A_3 : instruments.	100
temporal	Going for a haircut requires	A_1 : finding barber. A_2 : hard examinations. A_3 : write persuasively.	1,889
spatial	You are likely to find a document folder in	A_1 : file drawer. A_2 : madagascar jungle. A_3 : minerals.	1,599
desire	You would thank someone because you want to	A_1 : accomplish mutual goal. A_2 : feel good. A_3 : cool off.	1,781

Are Visual-Linguistic Models Commonsense KBs?

CS dimension	Starting prompt	Answer candidates	# Instances
part-whole	Furry animals have	A ₁ : effect of chilling innovation. A ₂ : millions of hair. A ₃ : hole in.	1,165
taxonomic	Recruit is a way to	A_1 : rate. A_2 : enlist. A_3 : slope.	1,323
distinctness	Shade is not	A ₁ : flat. A ₂ : postal worker. A ₃ : sunny.	828
similarity	Throw up is a synonym of	A_1 : rutinic acid. A_2 : random. A_3 : vomit.	644
quality	A wet floor is	A_1 : slippery. A_2 : light brown. A_3 : abbreviated to unido.	1,840
utility	A fork is used for	A_1 : speed of transit. A_2 : confuse voters. A_3 : picking up food.	2,090
creation	Music is created by	A_1 : olive oil mill. A_2 : mapping process. A_3 : instruments.	100
temporal	Going for a haircut requires	A_1 : finding barber. A_2 : hard examinations. A_3 : write persuasively.	1,889
spatial	You are likely to find a document folder in	A_1 : file drawer. A_2 : madagascar jungle. A_3 : minerals.	1,599
desire	You would thank someone because you want to	A_1 : accomplish mutual goal. A_2 : feel good. A_3 : cool off.	1,781

dim.: spatial

You are likely to find vegetables in: A. workplace. B. stationary shop. **C.** garden.

dim.: part-whole

A boat has:

- A. reached legal age. **B.** *sails*
- C. different rules.

dim.: quality

A hill can be:

A. steep.B. about to change.C. important for normal living.

Visual Commonsense Knowledge is more difficult than textual knowledge.

row	Images	part-whole 1, 165	taxonomic 1, 323	distinctness 828	similarity 644	quality 1, 840	utility 2, 090	creation 100	temporal 1, 189	spatial 1, 599	desire 1, 781	All 13, 259
1 RoBERTa 2 BERT 3 BERT _{CC} 4 UNITER BERT _T	_ _ _	68.5 62.8 68.4 70.1	61.8 71.2 62.0 74.5	80.2 80.1 66.6 81.4	<u>67.4</u> 54.8 51.1 62.4	69.7 68.1 66.0 72.0	74.2 72.4 65.4 73.8	72.0 74.0 62.0 79.0	60.9 53.7 53.6 54 5	54.8 52.4 <u>63.7</u> 53.9	<u>65.9</u> 60.4 58.3 61 5	67.5 65.0 61.9 66.5
5 UNITER_T 6 VILBERT_T	_	70.1 70.9 63.9	59.8 60.3	71.3 64.9	51.2 46.7	69.9 66.1	71.5 71.2	71.0 58.0	52.7 52.2	61.5 61.0	62.5 62.8	64.0 60.7
7 UNITER _{TV} 8 VILBERT _{TV} 9 UNITER _{T\tilde{V}} 10 VILBERT _{T\tilde{V}}	retrieved retrieved dummy dummy	63.0 55.0 61.5 60.4	54.0 49.9 51.6 <u>58.9</u>	<u>65.9</u> 55.9 63.4 64.9	46.4 42.2 42.2 43.9	62.4 57.4 <u>63.6</u> 63.4	65.4 60.5 <u>66.4</u> 65.5	<u>62.0</u> 52.0 55.0 55.0	49.2 47.2 <u>49.4</u> 48.4	57.4 52.9 <u>58.2</u> 56.8	58.5 56.6 59.7 <u>62.0</u>	58.4 53.0 57.1 57.9
11 UNITER _V 12 VILBERT _V 13 UNITER _{\tilde{V}} 14 VILBERT _{\tilde{V}}	retrieved retrieved dummy dummy	36.4 <u>37.8</u> 30.8 34.8	<u>36.6</u> 35.1 26.3 35.8	40.1 37.7 45.7 <u>50.5</u>	38.5 39.8 28.6 <u>40.4</u>	34.2 <u>36.8</u> 29.2 30.4	36.6 35.7 28.7 31.1	$ \begin{array}{r} 32.0 \\ \underline{41.0} \\ \overline{19.0} \\ 30.0 \end{array} $	<u>34.8</u> 33.0 28.7 29.4	36.2 <u>37.6</u> 29.6 33.5	34.3 34.0 30.7 30.1	36.0 36.8 29.7 34.6

Unimodal vs Multimodal models?

Unimodal and multimodal models' abilities to capture visual commonsense knowledge

Unimodal vs Multimodal models?

ViComTe dataset on five relation types: color, shape, material, size, and visual co-occurrence

Relation	# Classes	# (subj, obj) Pairs	Ex Template	Ex (subj, obj) Pair
color	12	2877	[subj] <i>can be of color</i> [obj]	(sky, blue)
shape	12	706	[subj] <i>has shape</i> [obj] .	(egg, oval)
material	18	1423	[subj] is made of [obj].	(sofa, cloth)
size (smaller)	107	2000	[subj] is smaller than [obj].	(book, elephant)
size (larger)	107	2000	[subj] is larger than [obj].	(face, spoon)
co-occurrence	5939	2108	[subj] co-occurs with [obj].	(fence, horse)

Unimodal and multimodal models' abilities to capture visual commonsense knowledge

Source	Group	Spearman ρ	# Subjs	Avg # Occ	Top5 # Occ	Btm5 # Occ	Acc@1
VG	All	64.3 ± 23.9	355	1252.6	64.6	308.6	
	SINGLE	62.2 ± 24.0	131	494.9	64.6	1181.6	80.2
	Multi	69.3 ± 20.7	136	1156.1	2062.2	347.0	
	Any	58.4 ± 27.1	88	2529.6	8452.4	1213.4	
Wikipedia	All	33.4 ± 30.6	302	543.6	1758.0	49.8	
	SINGLE	29.6 ± 29.9	110	352.2	345.8	35.0	35.5
	Multi	33.9 ± 30.9	119	500.8	1242.0	27.6	
	Any	38.2 ± 30.4	73	902.0	3000.2	161.2	

Future Direction: Physical Knowledge Enhanced LM/VLM

Humans learn a huge amount of knowledge about the external world via multisensory experience and interactions, however, current LLM/VLM are trained with static datasets,

thus lacks understanding of the physical world.

Put object A to the left of object B. Then, put object B in front of object A. Ζ Then, put object C to the left of object A. Which object is directly behind **Spatial** object B? Relation Object C is directly behind object B. 凸 ጥ Imagine you are a human being. Put your left hand on the back of your head. Ζ Can you still see your left hand? Knowledge requiring embodiment Yes, I can still see my left hand as it is positioned on the back of my head. 57

31

Future Direction: Physical Knowledge Enhanced LM/VLM

Humans learn a huge amount of knowledge about the external world via multisensory experience and interactions, however, current LLM/VLM are trained with static datasets, thus lacks understanding of the physical world.

Start Frame

CLIP

Action classification

End Frame

c picks up a knife: 0.251 c drops a knife: 0.251 **c picks up a pepper: 0.255** c looks around: 0.243

Generated Image

Physical Interactions involving actions and objects

From Reading/Seeing to Doing: From passive perception to interaction with the world.

