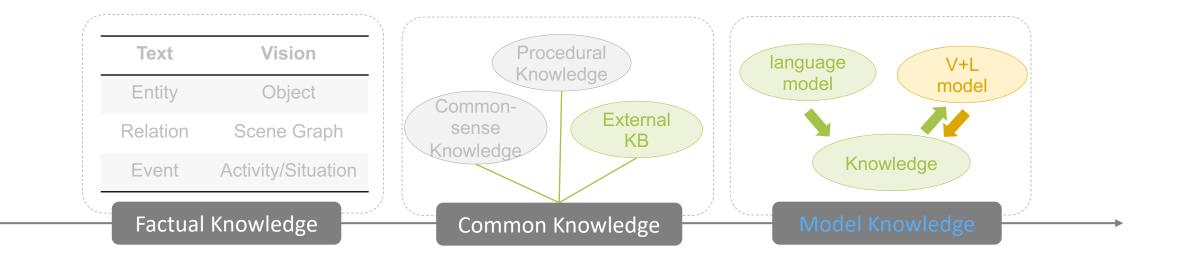
Feb 2023 AAAI Tutorials Knowledge-Driven Vision-Language Pretraining

Cross-Modal Knowledge Transfer

Knowledge-Driven Vision-Language Pretraining (Part V)

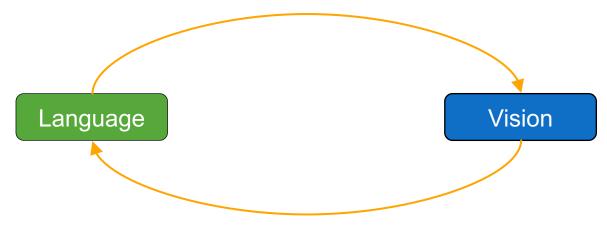
Jie Lei Meta Al jielei@meta.com

Compared to raw data, knowledge is **important and useful information**.



Part 1. Language knowledge helps learn better vision models

- Pure vision tasks: object detection, image classification, etc.
- Multimodal tasks: VQA, video captioning, etc.



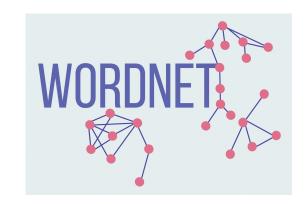
Part 2. Vision knowledge helps learn better language models

• Human learn language by connecting the words to their visual appearance in the surrounding world.

Part 1. Language \rightarrow Vision

• Implicit knowledge from pre-trained Language Models (LM)

• Explicit knowledge from human curated sources (e.g., wiki) or model generated knowledge (e.g., GPT-3 generated category definitions)



Concept name: snowberg
Def_wik: None
GPT3 Query:

Please explain the concept according to the context.

===

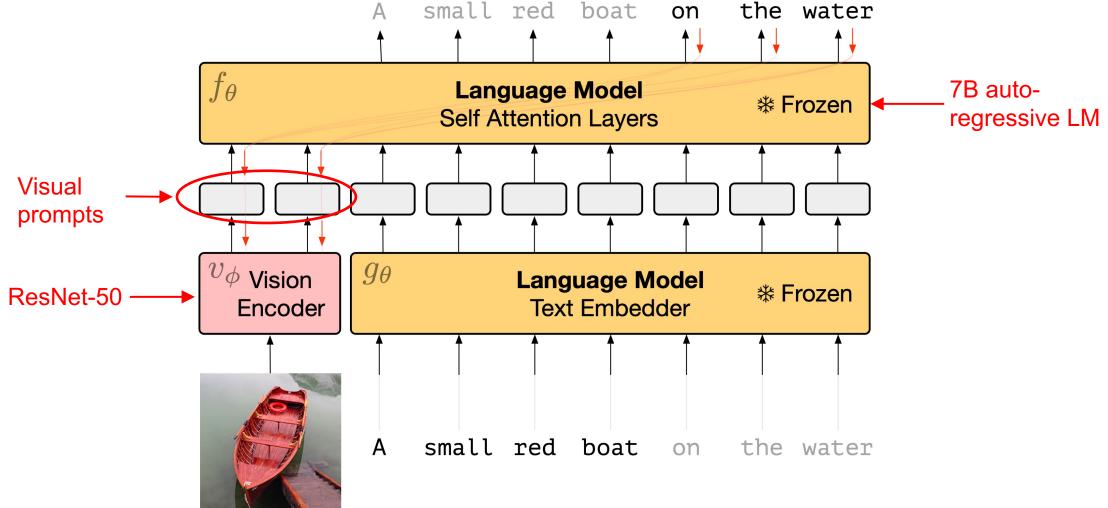
Q: ship

A: A water-borne vessel generally larger than a boat.

Part 1.1 Implicit Knowledge from Language Models

Frozen

- Preserve LM ability by freezing it during cross-modal model training.
- Gradient: frozen LM \rightarrow vision encoder



Multimodal Few-Shot Learning with Frozen Language Models, Tsimpoukelli et al., NeurIPS 2021

Frozen

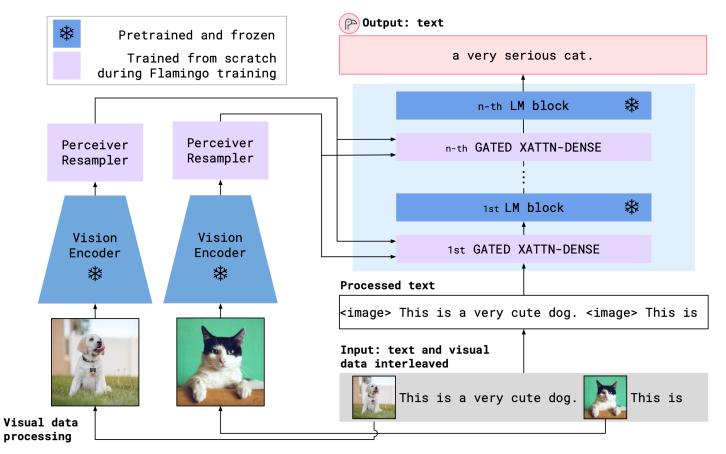
• Few-shot multimodal in-context learning after trained on 3M image-text pairs.

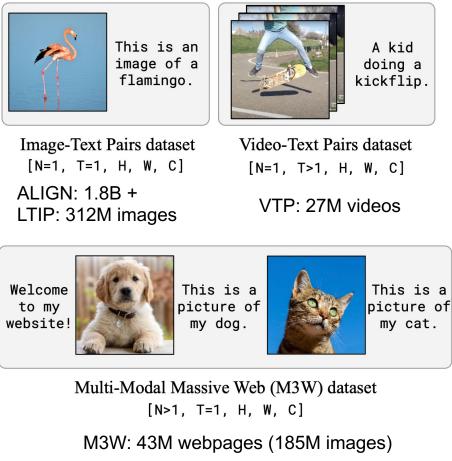
 Reasonably good zero/few-shot performance, but still underperform SOTA: limited multimodal data? (3M); LM is relatively small? (7B)

	n-shot Acc.	n=0	n=1	n=4	au		n-shot Acc.	n=0	n=1	n=4	τ	_
	Frozen	29.5	35.7	38.2	X		Frozen	5.9	9.7	12.6	X	
	Frozen scratch	0.0	0.0	0.0	X		Frozen 400mLM	4.0	5.9	6.6	X	
	<i>Frozen</i> finetuned	24.0	28.2	29.2	X		Frozen _{finetuned}	4.2	4.1	4.6	X	
VQAv2	<i>Frozen</i> train-blind	26.2	33.5	33.3	X	OKVQA	<i>Frozen</i> train-blind	3.3	7.2	0.0	X	🥆 Large gap w/
	Frozen _{VQA}	48.4	_	_	1		Frozen _{VQA}	19.6	-	_	X	SOTA
	Frozen VQA-blind	39.1	_	-	✓		Frozen VQA-blind	12.5	-	-	X	
	Oscar [23]	73.8	_	_	1		MAVEx [42]	39.4	-	_	✓	

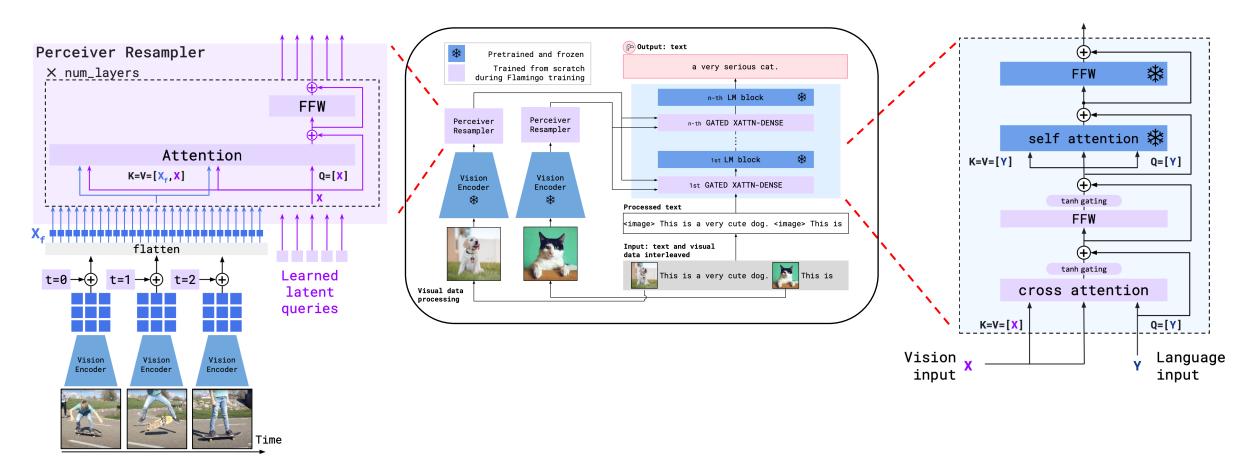
Multimodal Few-Shot Learning with Frozen Language Models, Tsimpoukelli et al., NeurIPS 2021

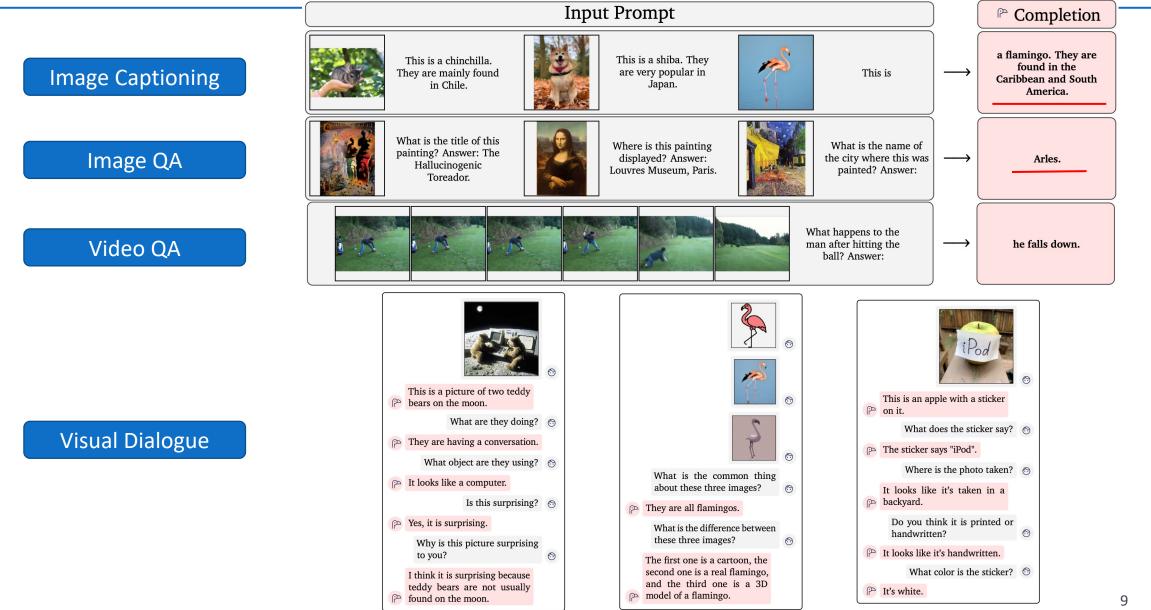
- A frozen 70B pre-trained LM + a frozen pre-trained ResNet.
- Trained w/ image/video-text pairs, along with interleaved image-text data (M3W), which is important for incontext learning.





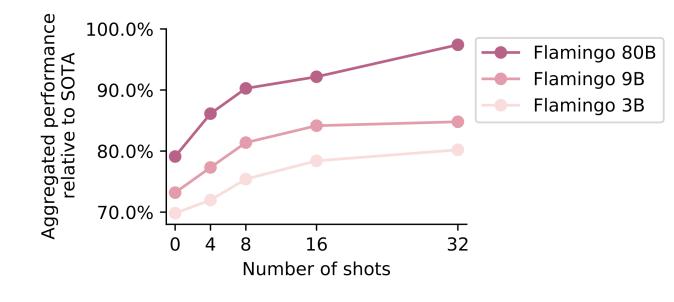
- Perceiver resampler (left): map variable sized visual inputs to fixed length visual tokens.
- Gated x-attn (right): bridge vision and language inputs & better preserve info in pre-trained LM. The tanh gate with zero initialization makes sure a smooth transition from a text-only LM to a visual-language model.

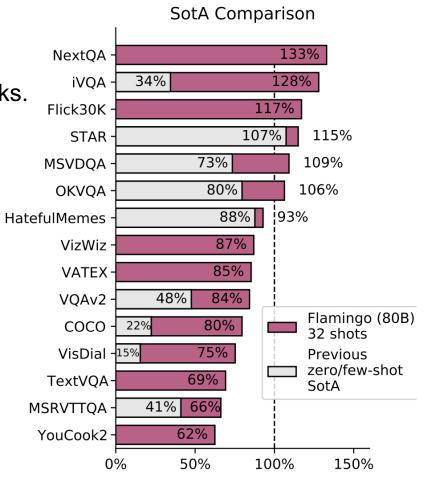




Flamingo: a Visual Language Model for Few-Shot Learning, Alayrac et al, arXiv 2022

- Left: larger model works better; more in-context examples helps.
- Right: thanks to larger model and more training data, he model achieves comparable or better results than SOTA on multiple tasks.



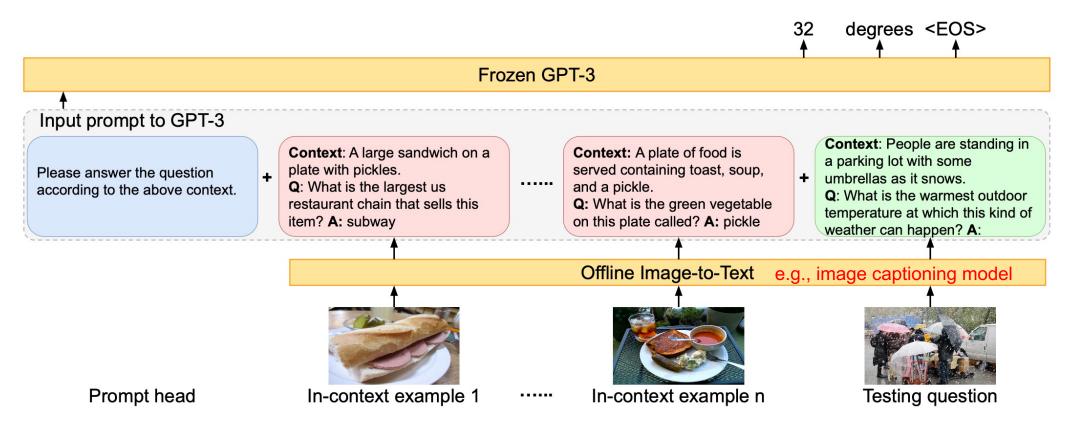


Performance relative to Fine-Tuned SotA

The method discussed above all require additional multi-modal pre-training, however, it is very expensive for LLMs. Is there an alternative way to utilize knowledge in LLMs?

PICa for few-shot knowledge-based VQA

- Summarize image info in text form with an image-to-text model, and prompt GPT-3 to get an answer.
 - Image QA problem is converted into a text QA problem.
 - Implicit GPT-3 knowledge <-> previous approaches explicitly query external knowledge
 - Few-shot w/o parameter update.



PICa for few-shot knowledge-based VQA

- Works better than fine-tuned models that use explicit wiki knowledge.
- A core issue: image-to-text model is not perfect, it will cause information loss.

	Method	Image Repr.	Knowledge Resources	Few-shot	Accuracy
	MUTAN+AN (Ben-Younes et al. 2017)	Feature Emb.	Wikipedia	X	27.8
	Mucko (Zhu et al. 2020)	Feature Emb.	Dense Captions	X	29.2
	ConceptBert (Garderes et al. 2020)	Feature Emb.	ConceptNet	X	33.7
	ViLBERT (Lu et al. 2019)	Feature Emb.	None	X	35.2
OKVQA	KRISP (Marino et al. 2021)	Feature Emb.	Wikipedia + ConceptNet	X	38.9
-	MAVEx (Wu et al. 2021)	Feature Emb.	Wikipedia + ConceptNet + Google Images	X	<u>39.4</u>
	Frozen (Tsimpoukelli et al. 2021)	Feature Emb.	Language Model (7B)	\checkmark	12.6
	PICa-Base	Caption	GPT-3 (175B)	\checkmark	42.0
	PICa-Base	Caption+Tags	GPT-3 (175B)	\checkmark	43.3
	PICa-Full	Caption	GPT-3 (175B)	\checkmark	46.9
	PICa-Full	Caption+Tags	GPT-3 (175B)	\checkmark	48.0

(e) What color is the man's jacket?
Context: A man flying through the air while riding a snowboard.
Answer: black
GT Answer: ['red', 'red', '

Acc.: 0.0

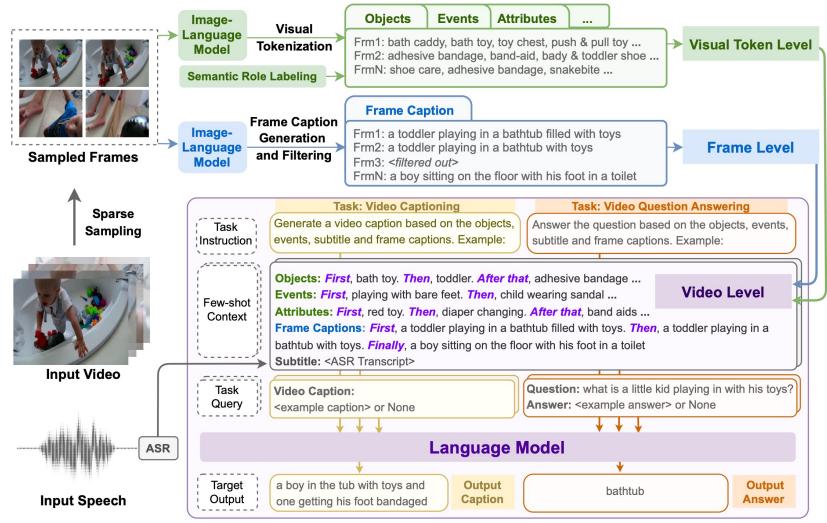
(f) How many giraffes are there?
Context: A herd of giraffe standing next to a wooden fence.
Answer: 3
GT Answer: ['6', '6', '8', '6', '8', '6', '8', '6', '8', '6', '8', '7']

Acc.: 0.0

An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA, Yang et al, AAAI 2022

VidIL: LLM video + language learning

• Generate frame-level info at various granularity, and put them in a temporal aware prompt for LLM.

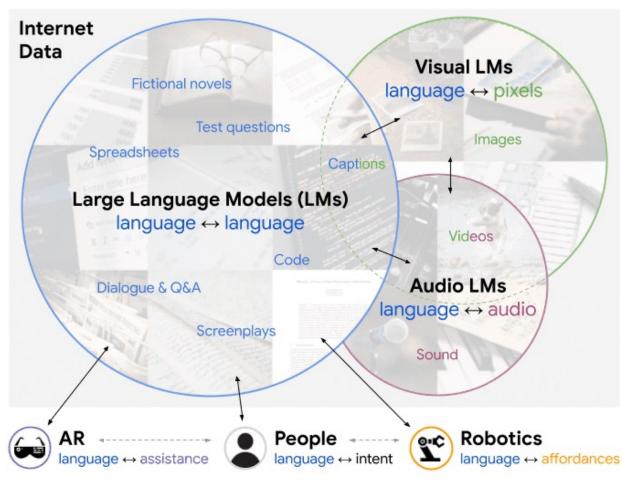


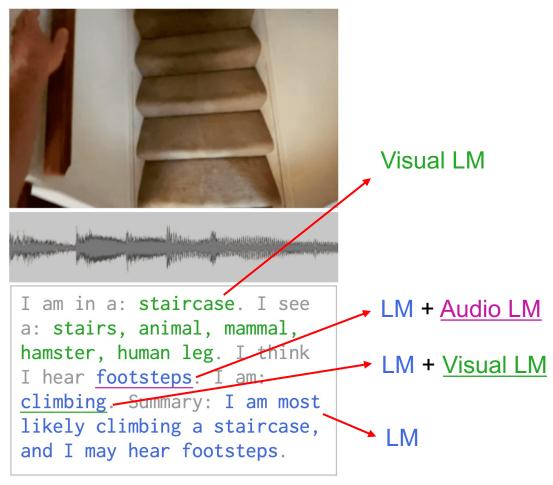
Temporal-Aware Few-shot Prompt

Language Models with Image Descriptors are Strong Few-Shot Video-Language Learners, Wang et al, NeurIPS 2022

Socratic: Composing Multi-modality w/ LLM

• A modular framework in which multiple pretrained models may be composed zero-shot through language without training.





Summarize ego-centric videos.

Socratic: Composing Multi-modality w/ LLM

• The model works well on image-text tasks such as image captioning, and video-text tasks such as text-to-video retrieval. It can also parse & generate robot instructions from free form human language.

	Method	BLEU-4	METEOR	CIDEr	SPICE	ROUGE-L
	*ClipCap [45]	40.7	30.4	152.4	25.2	60.9
COCO	[†] MAGIC [61]	11.4	16.4	56.2	11.3	39.0
captions	ZeroCap [62]	0.0	8.8	18.0	5.6	18.3
-	SMs 0-shot (ours)	6.9	15.0	44.5	10.1	34.1
	SMs 3-shot (ours)	18.3	18.8	76.3	14.8	43.7

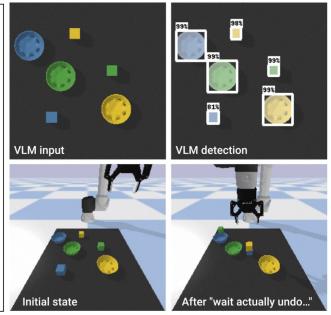
* finetuned on full training set with image-text pairs.

[†]finetuned on unpaired training set, zero-shot on image-text pairs.

Visual LM	<pre>objects = ["green block", "blue block", "yellow block", "green bowl", "blue bowl", "yellow bowl"]</pre>
	# move all the blocks to different corners.
User	<pre>Step 1. robot.pick_and_place("green block", "top left corner")</pre>
Instruction	<pre>Step 2. robot.pick_and_place("blue block", "top right corner")</pre>
modiciti	<pre>Step 3. robot.pick_and_place("yellow block", "bottom left corner")</pre>
	<pre># now move the blue block to the middle.</pre>
	<pre>Step 1. robot.pick_and_place("blue block", "middle")</pre>
LM	<pre># stack the blocks on top of each other.</pre>
	<pre>Step 1. robot.pick_and_place("yellow block", "blue block")</pre>
	<pre>Step 2. robot.pick_and_place("green block", "yellow block")</pre>
	<pre># wait actually undo that last step.</pre>
	<pre>Step 1. robot.pick_and_place("green block", "top left corner")</pre>
	<pre># put the yellow block in the bowl you think it best fits.</pre>
	<pre>Step 1. robot.pick_and_place("yellow block", "yellow bowl")</pre>
	# ok now sort the remaining blocks in the same way.
	<pre>Step 1. robot.pick_and_place("blue block", "blue bowl")</pre>
	Step 2. robot.pick_and_place("green block", "green bowl")

Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language, Zeng et al, arXiv 2022

				MSR-V	/TT Full		
	Category	Method	R@ 1↑	R@5↑	R@10↑	MdR↓	Audio
MSRVTT retrieval		JEMC [70] Collab. Experts [55] CLIP2Video [71]	12.5 15.6 54.6	32.1 40.9 82.1	42.4 55.2 90.8	16.0 8.3 1.0	yes yes no
	Zero-shot	CLIP via [67] SMs (ours)	40.3 44.7	69.7 71.2	79.2 80.0	2.0 2.0	no yes



LLM for ZS multi-modal learning: Pros/Cons

Pros

- It provides an efficient way to utilize foundation models of different modalities, no extra training required.
- The approaches are modular: new modules can be seamlessly plugged into the framework.

Cons

- Modality specific models are not perfect, there will be info loss when converted into text. ٠
 - The lower performance vs. e2e trained Flamingo model might partly due to this info loss. •

(e) What color is the man's jacket? Context: A man flying through the air while riding a snowboard. Answer: black GT Answer: ['red', 'red', 'red', 'orange', 'red', 'red', 'red', 'red', 'red', 'red']

Acc.: 0.0

(f) How many giraffes are there? **Context**: A herd of giraffe standing next to a wooden fence. Answer: 3 **GT Answer**: ['6', '6', '8', '6', '8', '6', '6', '7', '8', '7']

Acc.: 0.0

Failure cases from the PICa model.

The use of implicit knowledge from pre-trained LMs shows strong zero-shot performance for multi-modal tasks, however, they are hard to interpret. Is there a more interpretable way of using language knowledge?

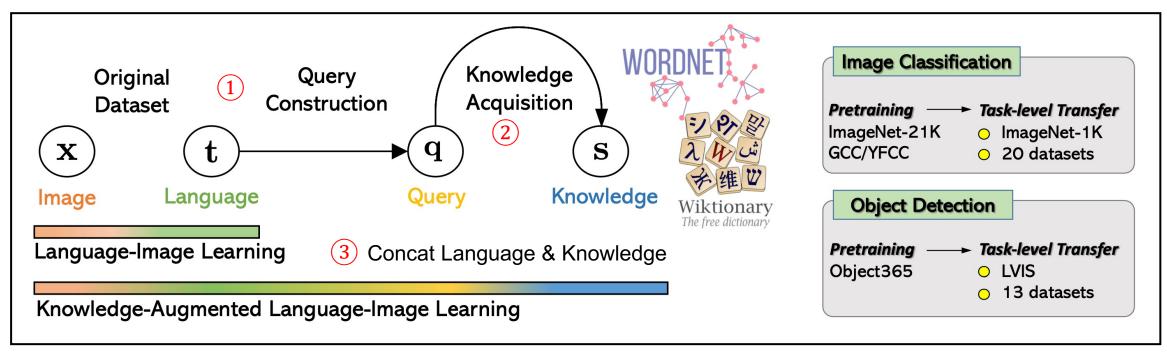
Part 1.2 Explicit Knowledge from Language

K-LITE

• External knowledge is useful to help the model understand rare concepts.

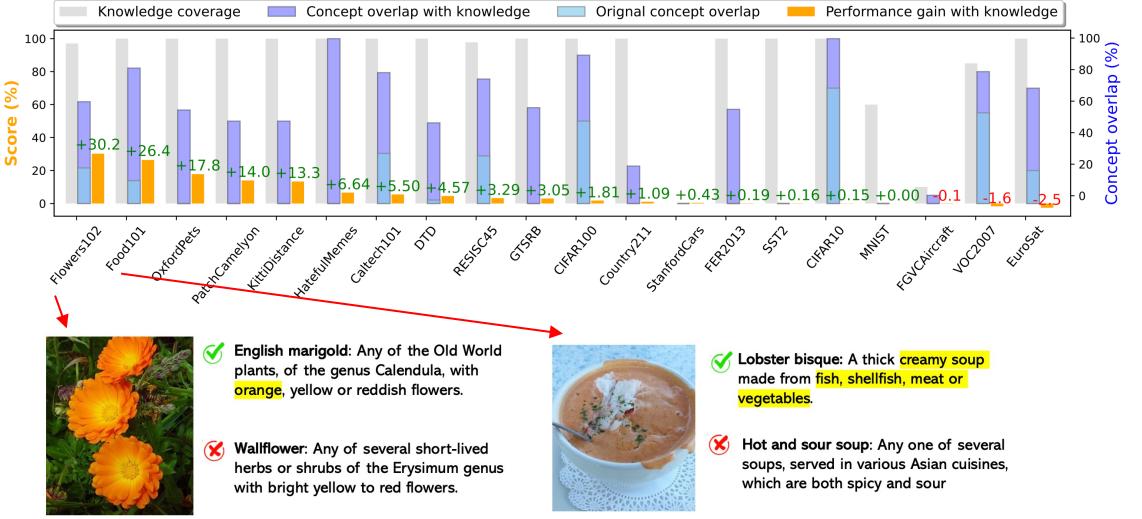
Sashimi

A dish consisting of **thin slices** or pieces of **raw fish or meat**.



K-LITE

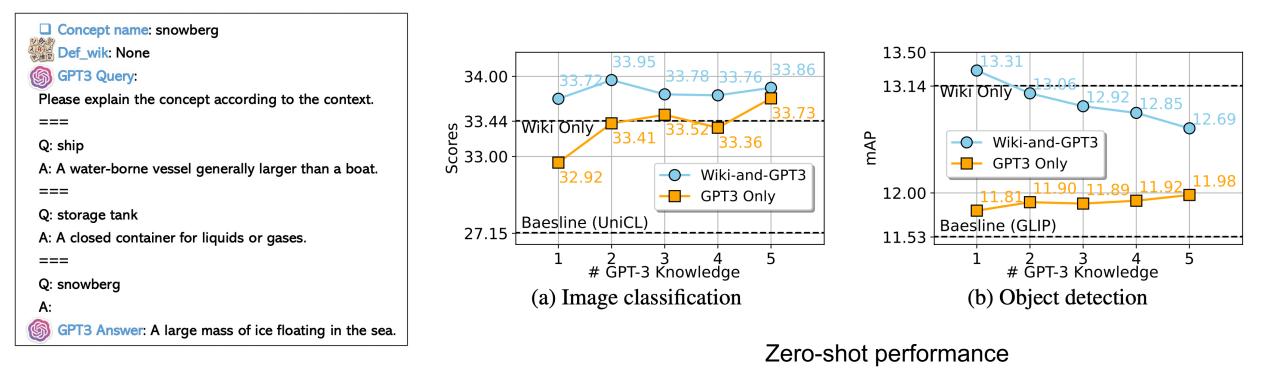
• Orange: knowledge improves zero-shot performance on 16/20 image classification datasets.



K-LITE: Learning Transferable Visual Models with External Knowledge, Shen et al., NeurIPS 2022

ELEVATER

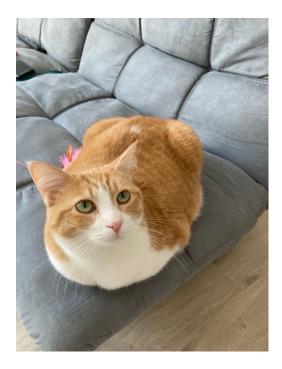
- Same K-LITE model, but with GPT-3 knowledge
- GPT-3 knowledge improves ZS image classification and object detection. More is better.
- GPT-3 + wiki is often better for image classification, but not for object detection.

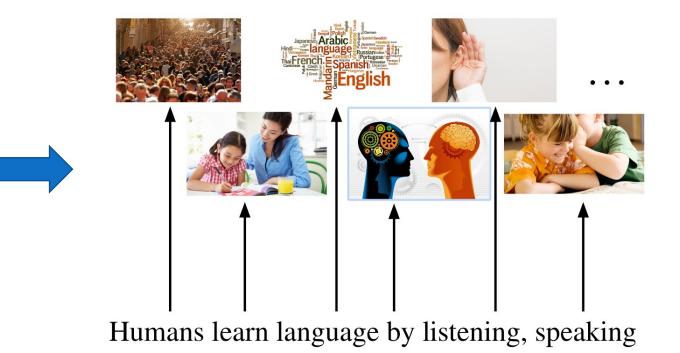


Could vision knowledge help learn language?

Could vision knowledge help learn language?

- Visual pointing is an essential step for most children to learn meanings of words [Bloom 2002].



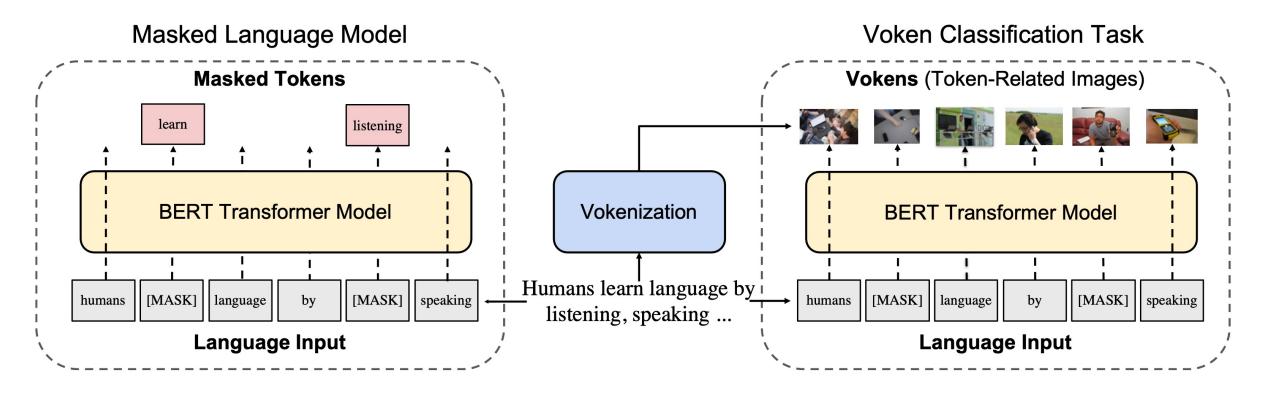


Look! This is a "cat"!

"ButterCup", cat photo credit to Xiaoyu Xiang How children learn the meanings of words. Paul Bloom. 2002. MIT press. Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision, Tan et al., EMNLP 2020

Vokenization: LM w/ Vision Supervision

- Besides standard Masked Language Modeling (MLM), the LM is also trained w/ a voken classification task, by assigning each text token into one of the images (vokens) in the pool.
- Vokens are pre-defined, and are obtained by using a pre-trained image-text retrieval model

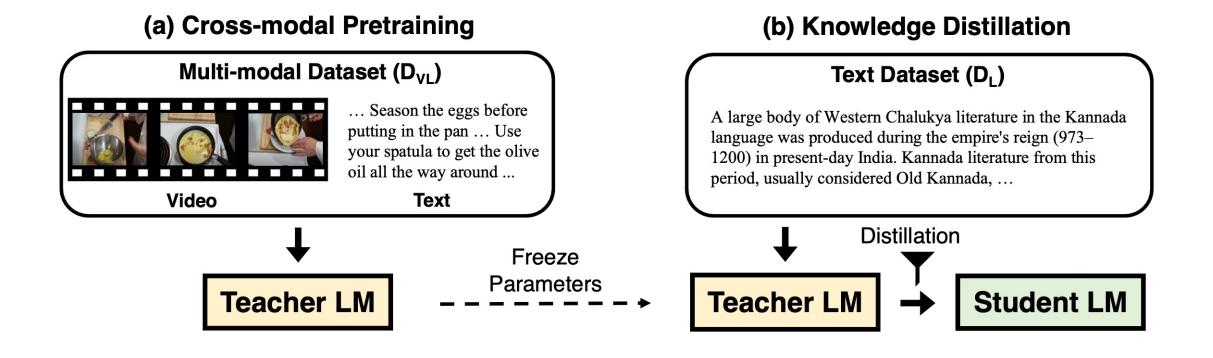


Vokenization: LM w/ Vision Supervision

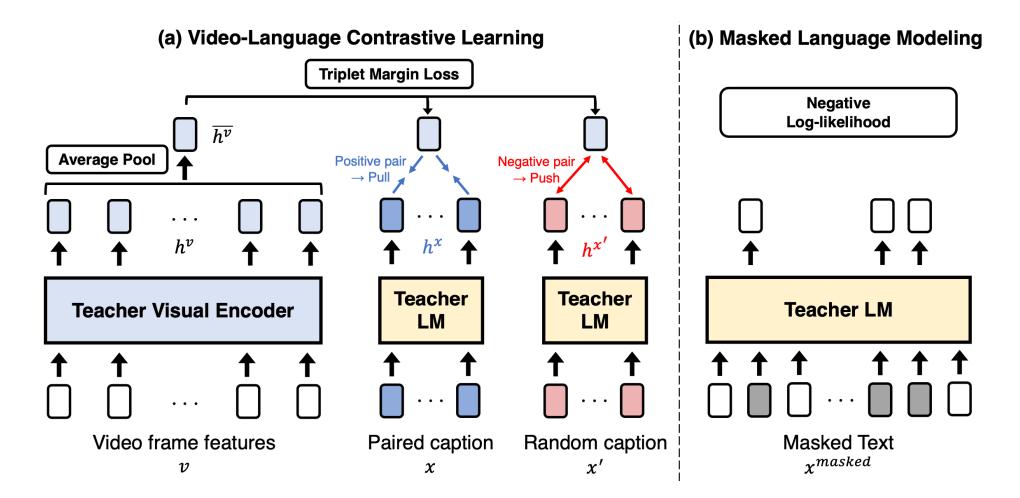
- Voken classification task improves LM performance on a wide range of pure-language tasks.
- This conclusion holds for both BERT and RoBERTa.

Method	SST-2	QNLI	QQP	MNLI	SQuAD v1.1	SQuAD v2.0	SWAG	Avg.
BERT _{6L/512H}	88.0	85.2	87.1	77.9	71.3/80.2	57.2/60.8	56.2	75.6
BERT _{6L/512H} + Voken-cls	89.7	85.0	87.3	78.6	71.5/80.2	61.3/64.6	58.2	76.8
BERT _{12L/768H}	89.3	87.9	83.2	79.4	77.0/85.3	67.7/71.1	65.7	79.4
BERT _{12L/768H} + Voken-cls	92.2	88.6	88.6	82.6	78.8/86.7	68.1/71.2	70.6	82.1
RoBERTa _{6L/512H}	87.8	82.4	85.2	73.1	50.9/61.9	49.6/52.7	55.1	70.2
RoBERTa _{6L/512H} + Voken-cls	87.8	85.1	85.3	76.5	55.0/66.4	50.9/54.1	60.0	72.6
RoBERTa _{12L/768H}	89.2	87.5	86.2	79.0	70.2/79.9	59.2/63.1	65.2	77.6
RoBERTa _{12L/768H} + Voken-cls	90.5	89.2	87.8	81.0	73.0/82.5	65.9/69.3	70.4	80.6

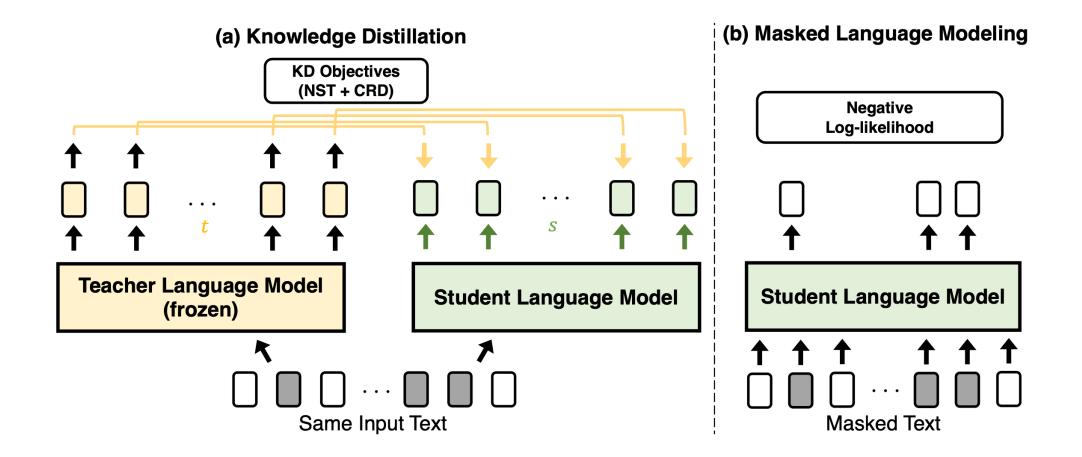
- Vokenization suffers from approximation error of using finite image labels + the lack of vocabulary diversity of a small image-text dataset (COCO).
- VidLanKD improves it by (1) using knowledge distillation instead of discrete vokenization to avoid approximation error; (2) using a large-scale video-language dataset HowTo100M.



• The teacher LM is trained with (a) video-language contrastive learning; + (b) masked language modeling



• The student LM is trained with (a) knowledge distillation; + (b) masked language modeling



• Cross-modal KD (last 2 rows) achieves better performance than image vokenization.

	SST-2 Acc	QNLI Acc	QQP Acc	MNLI Acc	SQuAD v1.1 EM [†]	SQuAD v2.0 EM	SWAG Acc	Avg.
BERT _{12L/768H} [68]	89.3	87.9	83.2	79.4	77.0	67.7	65.7	78.6
+ KD (Img-Voken) [68]	92.2	88.6	88.6	82.6	78.8	68.1	70.6	81.4
BERT _{12L/768H}	89.0	88.0	86.2	79.2	77.2	68.0	65.0	78.9
+ KD (Vid-Voken) w/ ResNet	93.4	89.2	88.7	83.0	78.9	68.7	70.0	81.7
+ KD (Vid-Voken) w/ CLIP	94.1	89.8	89.0	83.9	79.2	68.6	71.6	82.3
+ KD (NST+CRD) w/ ResNet	94.2	89.3	89.7	84.0	79.0	68.9	71.8	82.4
+ KD (NST+CRD) w/ CLIP	94.5	89.6	89.8	84.2	79.6	68.7	72.0	82.6

• Performance gain is mostly from knowledge, physical interaction, & temporal reasoning

Lexicon Predicate Logic	Knowledge	_ PIQA	TRACIE
	•		
BERT_{6L/512H}53.064.244.5+ KD-NST53.3 (+0.3)63.7 (-0.5)44.8 (+0.3)	44.0 48.6 (+4.6)	56.9 60.0 (+3.1)	63.4 66.7 (+3.3)

PIQA: QA w/ physical interactions + commonsense reasoning TRACIE: a temporal reasoning benchmark

VIDLANKD: Improving Language Understanding via Video-Distilled Knowledge Transfer, Tang et al., NeurIPS 2021

Take-way messages

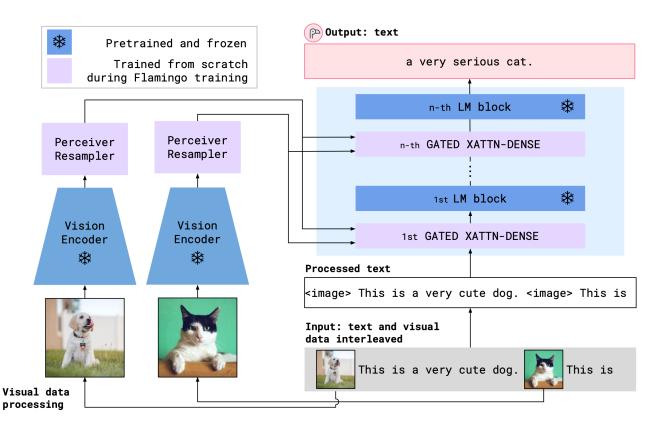
L → V: Implicit Knowledge	Training vision model w/ frozen LM	 Preserves the in-context learning ability of LM Larger LM is better, the same as pure language tasks They are quite general and are applicable to a wide range of tasks
	Convert multimodal task as text task for LM	 All of above. Computation efficient: no finetuning is required Inherently modular, easy to update individual modules May suffer info loss when during the conversion to text

 L -> V: Explicit Knowledge
 Human curated (e.g., wordnet) or LLM (GPT-3) improves image classification and detection

• Vision knowledge via vokenization or distillation improves LMs, especially for physical and commonsense knowledge, and temporal reasoning.

Future Work

• Existing approaches using frozen LLM shows better performance, but they typically require full backpropagation through a LLM, which is very expensive.



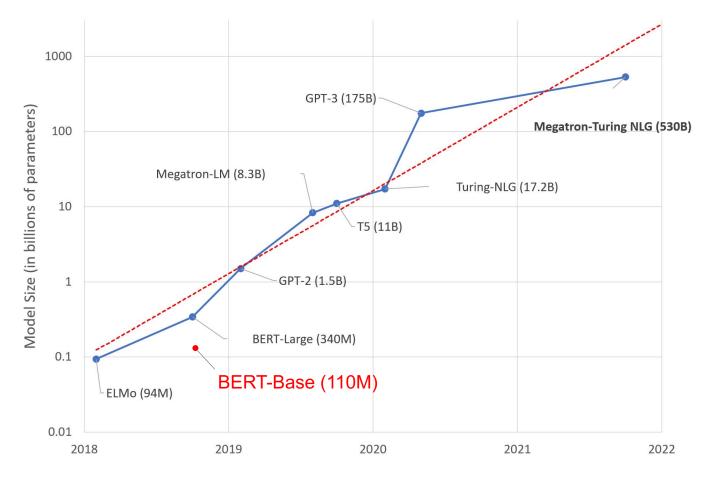
Flamingo, [Alayrac et al, arXiv 2022]

80B model: 1536 TPUv4 chips X 15 days.

- Full-backpropagation → Sparse backpropagation [Cheng et al, CVPR 2022]
- Deep fusion \rightarrow Shallow fusion

Future Work

• Using vision (image or video) supervision has shown some early success.



- Bidirectional LM only, casual LM is not explored.
- Small model (up to 110M BERT-base), vs., 175B GPT-3
- How about using other modalities (audio) as supervision?

Thanks!